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Abstract: Humans are exposed to heavy metals through a variety of occupational and non-occupational means. Growing 

evidence has accumulated that prolonged exposure to these heavy metals is associated with cancer occurrence at various 

body sites including lung, liver, bladder, colon, and skin. Much research effort has been placed on discovering the 

mechanisms by which heavy metals induce different kinds of cancers. Results from these mechanistic studies have varied 

for different metals, but increased activation of signaling pathways is often observed. This review will focus on the 

signaling molecules including epidermal growth factor receptor (EGFR), phosphatidyl inositol 3-kinase (PI3K), AKT, and 

mammalian target of rapamycin (mTOR) in carcinogenesis and cancer progression; and how these molecules are affected 

by the exposure to heavy metals: arsenic, chromium, nickel, and cadmium. Furthermore, drug targets for the prevention 

and therapy of cancers induced by heavy metals will be discussed with a focus on drugs that are currently in clinical trials 

for these targets. 
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INTRODUCTION 

Humans are exposed to several different heavy metals 
that exist in different forms in the natural course of living. 
These heavy metals are naturally occurring elements in part 
of the earth’s crust. Heavy metals exist all over the world in 
soil, water, and the atmosphere. Human interactions with the 
earth have increased heavy metal levels in water and the 
atmosphere from activities such as mining. Concurrently, the 
estimated number of new cancer cases for 2010 is greater 
than 1.5 million cases, which is increased from 2009 [1, 2]. 
The estimated number of cancer deaths for 2010 is greater 
than that in 2009 [1, 2]. Many heavy metals are known to 
induce cancer including arsenic, chromium, nickel, and 
cadmium with enough evidence to deem all four of these 
metals as human carcinogens [3-5]. However, a clearly-
defined mechanism of carcinogenesis induced by these heavy 
metals remains to be defined. A consistent factor found with 
these metals is an increased flux through cell growth and 
proliferative signaling pathways and increased tumor 
angiogenesis. Mechanisms of metal-induced carcinogenesis 
have been previously reviewed [6-9]. The purpose of this 
review is to discuss evidence for these heavy metals as 
carcinogens through inducing prominent growth and 
proliferative signaling pathways in epidermal growth factor 
receptor (EGFR), phosphatidyl inositol 3-kinase (PI3K), AKT, 
mammalian target of rapamycin (mTOR), and p70S6K1.  

HEAVY METALS AND CANCER 

Arsenic 

Like many heavy metals, arsenic can have toxic effects at 
high concentrations but also has a strong association with the  
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formation of several cancers with long exposure to low 
arsenic concentrations. The carcinogenic effects of arsenic 
are thought to be primarily attributable to the form arsenite 
(As+3) rather than arsenate (As+5) because arsenite exists 
greater amount in well water for drinking, and has a  
higher cellular uptake, which is reduced to arsenite when it 
enters the reducing environment of cells [8, 10]. Exposure  
to arsenic is strongly associated with development of cancers 
of lung, bladder, and skin. In an exhaustive review, the 
International Agency for Research on Cancer (IARC) found 
sufficient evidence for carcinogenicity of arsenic in humans 
[3]. Arsenic is highly associated with cancers of the lung, 
bladder, and skin. Exposure to carcinogenic levels of arsenic 
occurs primarily through arsenic in drinking water, 
occupational exposure in ore mining and smelting, and 
cigarette smoking (Table 1) [3]. Drinking water contamination 
with arsenic is a global public health issue with large 
populations exposed in the Gulf of Bengal, South America, 
and Taiwan [11]. There is an estimated 25 million people in 
Bangladesh and 6 million people in India who consume 
water with arsenic levels greatly exceeding the current 
maximum contaminant level (MCL) set forth by the U.S. 
Environmental Protection Agency (EPA) [12, 13]. Arsenic in 
drinking water is also considered a public health issue in the 
Western, Midwestern, and New England areas of the United 
States [12, 14, 15]. Classic epidemiological evidence comes 
from Taiwan where elevated risks for cancers of the lung, 
bladder, skin, kidney, liver, and colon are strongly associated 
with frequencies of black-foot disease, an arsenic-induced 
disease [16, 17]. In addition to drinking water, there is 
increased risk of death due to respiratory cancer in 
populations working in or living near copper smelters where 
there are increased levels of arsenic dusts, throughout the 
United States and other countries [18-29]. Arsenic is 
carcinogenic regardless of exposure to atmospheric or 
drinking water contaminated with arsenic. 
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Chromium 

Chromium exists in several forms [30], and most human 
exposure is occupational. Chromium exists as chromite in 
minerals; chromium metal is used in steel and other alloys; 
and chromium chemicals are used for chrome plating, dyes 
and pigments, and other applications. There is increased risk 
for lung cancer in chromium platers [31] and welders of 
stainless steel exposed to chromium (Table 1) [32]. Nasal 
cancers have also been identified in workers exposed to 
chromium [33, 34]. Chromium exposure is associated with 
elevated risks for lung cancer [31, 32, 35, 36] with the highest 
risk coming from workers in the “wet” end of chromium 
chemical production process [35]. The IARC found 
sufficient evidence for chromium hexavalent compounds as 
“carcinogenic to humans” with the most common site  
for cancer development being the lung [5, 37]. This 
comprehensive review did not find enough data to make any 
conclusions regarding trivalent chromium but several studies 
identify hexavalent chromium as being more toxic [38, 39], 
which may be due to the ability of hexavalent chromium to 
pass through cell membranes. Most epidemiology studies 
published show an association of lung cancer with chromium 
exposure [36, 40-52]. Chromium is most carcinogenic in its 

hexavalent form and shows strong associations with the 
formation of cancers, especially of the lung. 

Nickel 

There is clear evidence for cancer development in the 
nasal cavity, lung, and the larynx upon exposure to nickel. 
The International Committee on Nickel Carcinogenesis in 
Man concluded that several forms of nickel give rise to lung 
and nasal cancer [53]. A comprehensive review by the IARC 
in the same year also concluded that nickel is carcinogenic to 
humans [5]. Exposure is commonly occupational with high 
associations in workers employed in roasting, smelting, and 
electrolysis settings, nickel alloy plants, and welders (Table 1) 
[37]. Approximately 3-fold increased risk for lung cancer 
and 50-fold increased risk for nasal cancer were found 
among workers where oxidic and sulfidic nickel are primary 
exposures [53]. Risk appears to be associated more strongly 
with estimated cumulative exposure to soluble nickel rather 
than nickel oxide [54]. Soluble nickel appears to be the most 
consistent form to act as a carcinogen, consistent with 
several animal studies [5, 55-57]. There may also be a 
possible interaction between nickel exposure and tobacco 
making workers in the nickel industry who smoke 

 

Fig. (1). Signaling Mechanisms in Heavy Metal Carcinogenesis. EGFR, PI3K/AKT, and mTOR/p70S6K1 all can promote cell 

transformation or angiogenesis. EGFR uses mediators such as PI3K, Ras/ERK, STAT, c-SRC, and HIF-1 signaling to promote cellular 

behaviors for cell survival and proliferation in addition to promoting release of pro-angiogenic factors. PI3K/AKT can activate mTOR, NF-

B, HIF-1, AP-1, FOXO, enhance MDM2 inhibition of p53, and induce release or pro-angiogenic factors to promote pro-carcinogenic 

effects. mTOR/p70S6K1 can activate AP-1, protein synthesis factors, and pro-angiogenic factors to induce cancer formation. Evidence 

suggests that arsenic can activate EGFR, PI3K/AKT, and mTOR/p70S6K1 to promote cell transformation or angiogenesis. Less is known 

regarding chromium but current evidence suggests chromium can activate PI3K/AKT and possibly induce amplification of EGFR but further 

studies are needed to establish these mechanisms. Nickel has shown to activate PI3K, and induce amplification of EGFR that increases its 

sensitivity to ligands in addition to its well established effects of stabilizing HIF-1 signaling via inhibition of prolyl-hydroxylase enzymes. 

Cadmium is the least studied of the metals currently discussed but evidence shows cadmium can activate PI3K/AKT and mTOR/p70S6K1 

signaling but direct evidence is yet to be established regarding the involvement of these pathways in cadmium carcinogenesis. EGFR 

amplification is an often-seen phenomenon in cancer cells and appears as a likely result of exposure to several heavy metals that may 

increase sensitivity to growth factors. EGFR can also activate PI3K/AKT, Ras/ERK, and mTOR/p70S6K1 signaling, all of which are 

oncogenic pathways. The PI3K/AKT pathway is a potent cell survival/proliferation pathway with oncogenic potential. mTOR/p70S6K1 

signaling strongly promotes protein synthesis and cell growth required by proliferating cancer cells. The potential activation of these 

pathways and their interactions should be fruitful areas of future investigations. 
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particularly susceptible to a high risk for cancer development 
[54]. Several epidemiological studies observe an association 
between nickel exposure and lung cancer [54, 58-61]. Nickel 
has been deemed a carcinogen by several organizations and 
committees with data showing special attention should be 
paid to soluble forms of nickel. 

Cadmium 

Like many other metals, cadmium exposure is often 
occupational and has lasting effects in humans. Cadmium is 
commonly associated with ores and minerals and is produced 
primarily as a byproduct of extracting zinc and other metals 
followed by usage in nickel-cadmium batteries, pigments, 
metal coatings, and alloys [4]. Human exposure to cadmium 
occurs by mining ores and minerals associated with 
cadmium, industrial contamination of topsoil and edible 
plants, battery production, production of cadmium alloys, 
and cigarette smoking, among several others (Table 1). 
Human ingestion of cadmium is doubled in smokers who 
smoke one pack per day compared to ingestion from dietary 
sources alone [62] as the tobacco plant takes in cadmium 
from soil [63]. Cadmium oxide fumes generated at high 
temperatures are readily absorbed via the lung while 
inhalation of dusts depends on particle size [64]. The IARC 

found sufficient evidence for carcinogenicity of cadmium 
compounds in humans [4]. Cadmium has low excretion rates 
causing it to have a long half-life in the body of 15-20 years 
[65]. This long half-life leads to accumulation, especially in 
the kidneys and liver [4], and danger for carcinogenicity long 
after exposure. Several epidemiological studies show 
positive associations between cadmium exposure and 
development of cancer [66-80] with little contradictory 
evidence [68, 81-84]. Exposure to cadmium led to increased 
risk for cancer of the breast [67, 73], of nose and nasal 
sinuses [76, 77], of the prostate [68, 77], of the lung [69, 78-
80, 85], of the kidney [70-72, 74], and of the pancreas [75]. 
Cadmium exposure in humans occurs from several mediums 
that are both occupational and non-occupational but lead to 
carcinogenesis likely because of the long half-life of 
cadmium in the body. 

HEAVY METALS AND EGFR SIGNALING 

As a member of the ERBB family of receptor tyrosine 
kinases (RTKs), EGFR, or ERBB1, is often over-expressed 
in several types of human cancers and this over-expression is 
often associated with a poor prognosis [92-95]. Ligand 
binding to EGFR induces both homo-dimerization with 
EGFR or hetero-dimerization with ERBB2 (HER2), ERBB3 
(HER3), or ERBB4 (HER4). Dimerization leads to 

Table 1. Sources of metal exposure and associated cancers. 

Cancer Location Metal Source Citations 

Arsenic 

Lung, Pharynx Drinking Water, Copper Smelter, Tobacco, Tin Mining, Metal Refinery [12, 14, 16-25, 27-29] 

Skin Drinking Water [12, 14, 16-17] 

Bladder Drinking Water [12, 14, 16-17] 

Kidney Drinking Water [16, 21] 

Liver Drinking Water [16-17] 

Colon, Rectum Drinking Water, Metal Refinery [16, 21, 28] 

Chromium 

Lung, Nasal Chromeplating, Chromium Pigment Production, Chromium Chemical Production; Chromate Production, 

Gas Compression (Chromium Additive); Chrome Leather Tannery 

[31, 33-36, 40-45, 47-

48, 50-52] 

Nickel 

Lung, Nasal Tobacco, Nickel Refining; Nickel Smelting [54, 58-61, 76, 86] 

Stomach Nickel Smelting [59, 87] 

Cadmium 

Lung, Nasal Tobacco, Ni-Cd Battery Factory, Cadmium Factory; Cadmium Recovery Plant; Area Near Smelting Factory [66, 69, 76-80, 84-86] 

Kidney Occupational [70-72, 74] 

Breast Tobacco, Pesticide*, Hazardous Waste* [67, 73, 88] 

Endometrial Dietary Sources [89-90] 

Pancreas Soil, Water [75, 91] 

Prostate Cadmium Factory [68-69] 

 



Heavy Metals and Cancer Current Cancer Drug Targets, 2013, Vol. 13, No. 3    255 

conformational changes allowing auto-phosphorylation of 
the cytoplasmic C-terminal segment of the receptor. After 
the intracellular domain is auto-phosphorylated, several 
adaptor proteins bind to the phospho-tyrosines leading to 
activation of several pathways including MAPK and PI3K-
AKT pathways. ERBB receptor signaling can activate 
several transcriptions factors including c-fos, c-Jun, c-myc, 
STAT, and NF-kB [96]. These pathways regulate cell 
proliferation, migration, metastasis, evasion of apoptosis, 
and angiogenesis [97]. Phosphorylated EGFRs can bind 
proteins containing an SH2 domain or PTP domain. PTP 
domains are often located in phosphotyrosine phosphatases, 
which remove the phosphate from the EGFR to terminate 
EGFR signaling [98]. 

Arsenic 

Arsenic exposure to cells can induce the phosphorylation 
of EGFR, which indicates the activation of EGFR [99-109]. 
Arsenic can also increase the phosphorylation levels of 
EGFR with concurrent ultraviolet (UV) exposure [110]. 
Further evidence of EGFR activation is that arsenic can 
induce phosphorylation of Shc and increase association of 
Shc with Grb [100, 106, 107], two well-known adapter 
proteins to EGFR. Many studies have shown increased 
phosphorylation levels of EGFR, but few studies have 
assessed EGFR kinase activity.  

Arsenic exposure to epithelial cells induces proliferation 
that is mediated by EGFR [105, 108]. Several transcription 
factors and signaling pathways likely contribute to arsenic-
induced proliferation via EGFR. Cyclin D1 is the final target 
of EGFR signaling induced by arsenic as cyclin D1 
knockdown arrests arsenic-induced proliferation [111] and 
arsenic-induced cyclin D1 is blocked with EGFR inhibitors 
[99]. The transcription factors c-fos and c-jun, which 
promote proliferation, are increased with arsenic exposure in 
an EGFR-dependent fashion [100]. Arsenic also increased -
catenin, an oncogenic member of the Wnt signaling pathway, 
and this response was blunted with inhibitors to EGFR [105]. 
This response may be critical to arsenic-induced proliferation 
as a dominant negative to -catenin decreased proliferation 
in cells exposed to arsenic [105]. EGFR-dependent arsenic 
induction of signaling pathways includes the ERK1/2 and 
PI3K pathways [99-103, 107-109, 112]. Other members of 
the MAPK signaling pathway activated by arsenic are Raf1, 
MEK1/2, JNK1/2, and p38 [107, 109, 113]. Activation of 
MAPK pathways by arsenic is likely mediated by EGFR-Ras 
signaling as arsenic activates Ras in an EGFR-dependent 
manner [105, 109] and arsenic-induced activation of 
MEK1/2 and ERK1/2 is prevented with interruption of Ras 
signaling [109]. Matrix metalloproteinases (MMPs) break 
down extracellular matrix and are critical for cancer cell 
invasion. Arsenic can induce MMP7/9 in an EGFR-
dependent fashion [101, 105]. Clearly, arsenic induces many 
pathways throughout the cell leading to several changes in 
cell behavior resembling cancer cells. 

The mechanism by which arsenic activates EGFR is not 
fully understood. EGF autocrine signaling was ruled out as 
monoclonal antibodies to EGF did not affect arsenic-induced 
EGFR activation [105, 106]. A more recent study observed 
increased production of heparin binding-EGF (HB-EGF) 

mRNA in response to arsenic exposure [99], but its role in 
EGFR activation by arsenic has not been studied. Perhaps 
the most likely candidate for mediating arsenic-induced 
EGFR activation is Src. A Src kinase inhibitor prevented 
EGFR activation upon arsenic exposure [106]. Furthermore, 
arsenic-induced activation of ERK1/2 was prevented with a 
Src inhibitor [101, 106] and arsenic can activate Src [112]. 
This would then raise the question of how arsenic activates 
Src. One report showed that arsenic bound to and altered the 
conformation of Src [114], but whether this alteration 
increases Src activity and mediates arsenic-induced EGFR 
activation has yet to be assessed. One final candidate for 
mediating EGFR activation by arsenic is reactive oxygen 
species (ROS) as N-acetyl cysteine (NAC) treatment 
prevented arsenic-induced phosphorylation of EGFR [106]. 
EGFR has previously been shown to be activated by ROS 
[115], but the source of ROS from arsenic exposure and the 
molecular mechanisms remain to be studied. 

EGFR appears to be important for arsenic-induced cancer 
formation. Total EGFR expression is increased in cells 
chronically treated with arsenic [116], suggesting a possible 
amplification of the EGFR gene. This was also seen in 
animals showing an increase in EGFR mRNA levels with 
arsenic consumption [117], although another report did not 
detect a similar increase [118]. Increases in total EGFR 
expression were seen in newborn animals whose mothers 
were consuming arsenic while pregnant [119]. In humans, 
plasma samples from persons in Bangladesh with high 
concentrations of arsenic in local well water showed higher 
EGFR extracellular domain (EGFR-ECD), a marker of 
increased EGFR protein expression [120]. Furthermore, 
human lung tumors from persons with elevated toenail 
arsenic concentrations showed an increased total EGFR, 
although this was not significant [99]. However, this study 
did find a significant association between higher arsenic 
exposure and higher p-EGFR staining in lung tumor sections 
from humans [99] suggesting increased EGFR activation in 
tumors from persons with high arsenic exposure. More 
recently, liver cancer patients living in an endemic area of 
arsenic intoxication showed higher serum EGFR levels 
compared to patients living outside this endemic area [121], 
indicating EGFR may also be a biomarker for arsenic 
exposure. Together, these data suggest arsenic activates 
EGFR and this membrane receptor regulates many of the cell 
behaviors induced by arsenic. 

Chromium 

Chronic exposure (up to 38 passages) of an immortalized 
bronchial epithelial cell line to chromium induced malignant 
transformation of the cells that could grow tumors when 
injected into nude mice [122]. Subclonal cell lines from 
these chromium-mediated immortalized cells found a 
consistently higher expression of EGFR. Alternatively, one 
published report did not find increased EGFR expression 
after only 24hrs of chromium exposure [123]. This same 
study did find increased expression of EGFR family 
members ERBB2 and ERBB3 but whether that is an acute 
response to chromium exposure or a chronic adaptation has 
not been studied yet [123]. Despite the finding of increased 
EGFR expression in chromium-treated cells [122], there 



256    Current Cancer Drug Targets, 2013, Vol. 13, No. 3 Carpenter and Jiang 

have been no published reports showing chromium-induced 
EGFR phosphorylation or increased kinase activity. 
Chromium exposure has been seen to activate PI3K-AKT, 
MAPK [124], and STAT [125] signaling, but whether 
chromium utilizes EGFR to activate these pathways has not 
been studied. There are few studies published assessing the 
role of EGFR in chromium carcinogenesis but the evidence 
suggesting EGFR is amplified in chromium-induced tumors 
may warrant further investigation in the future. 

Nickel 

Nickel exposure to primary cells can induce cell 
immortalization leading to increased proliferative potential 
[126]. Cells immortalized by nickel exposure have an 
increased number of EGF receptors present on their cell 
membranes, suggesting EGFR may participate in nickel-
induced immortalization [127]. Nickel-immortalized cells do 
not show increased phosphorylation of EGFR but they do 
show increased sensitivity to EGF compared to normal 
epithelial cells [127]. This may suggest EGFR signaling is 
enhanced rather than activated by nickel. A more recent 
study found that non-tumorigenic lung epithelial cells 
showed increased phosphorylation of EGFR with nickel 
exposure [128]. These results likely point out that the effect 
of nickel on EGFR is largely dependent on the cellular 
context. 

A recent study may indicate nickel can alter EGFR 
location and function. Bronchial epithelial cells exposed to 
several different kinds of carcinogens from tobacco smoke 
and cells exposed to mixtures including nickel exhibited a 
shift of EGFR from the cell membrane to the nucleus [129]. 
This could be of great significance as EGFR has known 
capabilities of translocating to the nucleus and directly 
interacting with gene co-activators to regulate gene 
expression [130]. However, the significance of nuclear 
translocation of EGFR with nickel exposure is currently 
unknown. Nickel has also been shown to activate PI3K-AKT 
and MAPK signaling including ERK1/2 [131, 132], p38 
[133, 134], and JNK1/2 [133, 135]. These are common 
pathways downstream of EGFR, but whether EGFR 
regulates nickel-induced signaling through MAPK pathways 
has not been published. Nickel is clearly a carcinogen and a 
few studies that have assessed the role of EGFR in nickel 
carcinogenesis provide interesting results. Nickel can induce 
several changes to EGFR and downstream signaling, but 
whether these changes contribute to nickel carcinogenesis 
and nickel-induced activation of growth and proliferative 
signaling requires further investigation. 

Cadmium 

The link between cadmium exposure and EGFR is 
circumstantial with the current literature. A recent study 
observed elevated EGFR expression levels, as well as 
several pro-inflammatory cytokines, with cadmium exposure 
[136]. Another report showed cadmium exposure leads to 
increases in Grb2, Shc, SOS, and Raf-1 [137], all of which 
are direct signaling components downstream of EGFR. Our 
lab has shown cadmium can activate AKT, ERK1/2, and 
HIF-1 signaling via reactive oxygen species [138], all of 
which can be upregulated by EGFR. Cadmium appears to 

affect the estrogen receptor, which may explain its link to 
breast cancer [139]. Chronic low-dose cadmium treatment  
on breast epithelial cells induces cell transformation 
characterized by tumor formation in nude mice [140]. This 
transformation also induced a loss of HER2 (ERBB2). One 
report showed cadmium-induced proliferation was blunted 
with pretreatment of inhibitors to EGFR [141]. However, 
further study of EGFR activation and its role in cadmium-
induced cell signaling was not included in this study. 
Considering cadmium upregulates EGFR expression, 
upregulates EGFR adaptor proteins, and evidence suggesting 
EGFR may regulate cadmium-induced proliferation, further 
study of EGFR in cadmium carcinogenesis is warranted. 

HEAVY METALS AND PI3K/AKT SIGNALING 

Phosphitidylinositol 3-kinases (PI3Ks) in mammalian 
cells are composed of Classes I, II, and III. Class I PI3Ks 
have two subfamilies: class IA, which are activated by 
receptor tyrosine kinases (RTKs), and class IB, which are 
activated by G-protein-coupled receptors. Class IA PI3Ks 
are most understood to participate in regulating cell 
functions such as proliferation, growth and survival [142, 
143]. These PI3Ks consist of heterodimers of a catalytic 
subunit, p110, and a regulatory subunit, p85. PI3K catalyzes 
the conversion of phosphatidylinositol-4,5-bisphosphate 
(PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3). 
This phosphate can be removed by phosphatase and tensin 
homolog deleted on chromosome 10 (PTEN) thereby 
negatively regulating PI3K signaling. PIP3 produced from 
PI3K activity recruits AKT, a serine/threonine kinase, and 
phosphoinositide-dependent kinase 1 (PDK1) to the plasma 
membrane by binding to their pleckstrin homology (PH) 
domains. Upon recruitment of PDK1 and AKT to the 
membrane, PDK1 phosphorylates AKT in its kinase domain 
(Thr308). Full activation of AKT comes with phosphorylation 
of its carboxy-terminal hydrophobic motif (Ser473) by 
PDK2 [144-146]. Following activation, AKT is released 
from the plasma membrane and moves to the cytoplasm and 
nucleus to phosphorylate many molecules that regulate many 
of the cell functions controlled by PI3K signaling. The main 
biological consequence of AKT activation related to cancer 
cells is survival, proliferation, and growth [147]. Activated 
RTKs, including EGFR, can interact with the p85 regulatory 
subunit to increase catalytic activity of the p110 subunit 
[148-150]. The p85 regulatory subunit can also bind to 
intracellular proteins including protein kinase C, SHP1, Rac, 
Rho, Ras, and Src to regulate PI3K activity [151]. AKT can 
activate mTORC1 indirectly by inhibiting TSC2, thereby 
allowing Rheb-GTP to activate mTORC1 signaling [152]. 

Arsenic 

Arsenic exposure leads to activation of PI3K signaling. 
Specifically, arsenic has been shown to increase enzyme 
activity of PI3K [153-156]. Downstream, arsenic exposure 
also leads to increased phosphorylation of AKT [108, 111, 
153-163] that is dependent on PI3K activity [111, 153-156, 
159-162]. These studies strongly support that arsenic can 
activate PI3K signaling. 

Arsenic alters cell behavior and many of these changes 
are regulated by the PI3K-AKT pathway. Our lab has shown 
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that chronic arsenic exposure can increase cell proliferation 
and anchorage-independent growth, and both of these can be 
reduced with interruption of the PI3K-AKT pathway [163]. 
Other labs have also shown that arsenic exposure increases 
cell proliferation [111, 155, 156, 158, 161], which can be 
dependent on PI3K signaling [111, 158]. Arsenic also 
increases the ability of cells to proliferate independent of 
attachment in a PI3K-dependent manner [116, 164]. Chronic 
exposure of cells to arsenic can lead to increased ability for 
migration and invasion, which can also be dependent on 
PI3K signaling [157]. Arsenic-induced proliferation has been 
shown to be dependent on cyclin D1 [111, 156]. In addition, 
arsenic increased cyclin D1 levels [155, 156, 165] via 

mechanisms dependent on PI3K-AKT signaling [111, 155, 
156]. Several other signaling molecules may participate in 
arsenic-induced cell growth and proliferation. Arsenic 
exposure increases beta-catenin due to arsenic-induced 
phosphorylation of GSK-3  [163, 167], which is PI3K-
dependent [108, 160, 161, 167]. Arsenic likely induces NF-

B signaling as IKK  and IKK  are decreased with arsenic 
treatment [155]. Arsenic also increased levels of COX-2, an 
oncogenic enzyme [168] that is regulated by PI3K [116, 
154]. Arsenic also increased phosphorylation of p70S6K1, 
which was PI3K-dependent [155, 169]. In addition to 
p70S6K1 signaling, arsenic activates the MAPK pathway 
JNK1/2 in a PI3K-dependent manner [165]. Another 
mechanism that may participate in arsenic-induced 
carcinogenesis is through epigenetic mechanisms. One report 
showed arsenic can induce phosphorylation of histone H3 
that was dependent on PI3K and ERK signaling [170]. 
Furthermore, arsenic exposure can induce the phosphorylation 
of EZH2, [171], the catalytic subunit of polycomb-repressive 
complex 2 (PRC2) that alters methylation of histone H3 
leading to wide changes in expression of tumor suppressors 
and oncogenes. Arsenic-induced phosphorylation of EZH2 
required expression of STAT3, JNK, and AKT [171]. 

Arsenic also promotes tumor growth via promoting 
angiogenesis with low concentration exposure [172-175]. 
Our lab has shown that arsenic can induce angiogenesis in 

vivo [174]. We, and others, have shown arsenic can activate 
HIF-1 signaling [153, 164, 174] and upregulate VEGF 
expression [153, 173, 174] in a PI3K-dependent fashion 
[153, 174]. Furthermore, interruption of PI3K-AKT signaling 
reduced in vivo angiogenesis resulting from arsenic exposure 
[174]. Together these results suggest that arsenic has wide-
ranging effects and PI3K-AKT is a crucial signaling pathway 
mediating many cellular changes with arsenic exposure. 

The mechanism by which arsenic activates PI3K is not 
well understood. Arsenic-induced activation of PI3K-AKT 
signaling may be mediated by ROS as the ROS scavengers 
NAC and catalase prevented arsenic-induced AKT activation 
[153, 160, 174] although one report showed ROS inhibitors 
could not prevent arsenic-induced phosphorylation of AKT 
[162]. ROS-mediated activation of AKT appears to be 
important for arsenic-induced carcinogenesis as inhibition of 
ROS prevents arsenic-induced cell transformation [163] and 
in vivo angiogenesis [174]. Other factors may also play a 
role in PI3K activation such as MAPK signaling as a p38 
inhibitor prevented arsenic-induced AKT phosphorylation 
[162] though this mechanism is not well understood. 

Inhibition of JNK or STAT3 also prevented arsenic-induced 
activation of AKT [176] likely indicating arsenic can 
activate AKT by multiple mechanisms. Considering the 
evidence suggesting arsenic activated EGFR, it is possible 
that arsenic-induced activation of PI3K-AKT signaling is 
mediated by EGFR, but this has yet to be studied. Lastly, 
inhibition of c-Met, which is the receptor for hepatocyte 
growth factor, also reduced arsenic-induced activation of 
AKT [159]. PI3K and AKT are clearly activated upon 
arsenic exposure and are critical for many of the carcino- 
genic effects. Future studies should seek to understand how 
arsenic activates PI3K-AKT and how this pathway regulates 
many of the cellular behaviors participating in carcino- 
genesis, including angiogenesis. 

Chromium 

There is little study of the effect of chromium on the 
PI3K-AKT pathway. There are a few studies that show 
chromium exposure leads to AKT phosphorylation [124, 
177, 178]. However, there are no reports of the effects of 
chromium on PI3K activity. Furthermore, whether PI3K-
AKT participates in any aspect of chromium carcinogenesis 
has not been published. Considering the lack of data, no 
conclusions may be accurately made regarding the role of the 
PI3K-AKT pathway in chromium carcinogenesis. 

Nickel 

Similar to arsenic, nickel can increase activity of PI3K 
[179] and induce phosphorylation of AKT [134, 179-181, 
182] that is dependent on PI3K activity [179-181]. Despite 
clear evidence that nickel activates PI3K signaling, further 
study regarding the role of PI3K-AKT in nickel-induced 
carcinogenesis has been little. Nickel exposure does lead to 
increased COX-2 [181], increased IL-6 release [181], and 
activation of p70S6K1 [179] in a PI3K-dependent fashion. 
All three factors: COX-2 [168], IL-6 [183] and p70S6K1 can 
be oncogenic. In addition to this, nickel can induce the 
phosphorylation of GSK-3 , FOXO3A, and FOXO1A [180], 
all of which are AKT targets. GSK-3  phosphorylation 
releases the oncogenic -catenin and FOXO3A phosphorylation 
decreases its pro-apoptotic activity. In addition, inhibition of 
AKT in nickel-transformed cells decreased expression of the 
anti-apoptotic proteins Bcl-2 and Bcl-xL [182]. This may 
suggest nickel carcinogenesis utilizes these mechanisms for 
cell proliferation and survival. However, further studies are 
required to understand the role of PI3K-AKT signaling in 
nickel carcinogenesis. 

Cadmium 

Our lab and others have shown that cadmium exposure 
leads to AKT phosphorylation [137-138, 184-191] that is 
dependent on PI3K activity [138, 191]. Cadmium can lead to 
phosphorylation of the p85 subunit thereby activating PI3K 
[137] further suggesting cadmium can activate the PI3K-
AKT pathway. In addition, cadmium-transformed cells that 
display enhanced ability to grow in soft agar and migrate 
have these abilities significantly reduced with inhibition of 
AKT [192]. There is some evidence that cadmium-induced 
activation of AKT can be mediated by multiple molecules. 
One potential mediator between cadmium and activation of 
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PI3K and other signaling pathways is ROS. Our lab, and 
others, have shown cadmium can induce ROS generation 
[138, 185-186]. Inhibition of ROS reduces activation of 
AKT by cadmium [138, 185, 186]. Our lab has further 
shown that chronic cadmium exposure can lead to cell 
transformation characterized by primary tumor growth in 

vivo and tumor angiogenesis [138]. We also found cadmium 
can lead to increased HIF-1  and VEGF expression that is 
dependent on PI3K activity [138]. Other factors may also 
contribute as cadmium activation of AKT has been shown to 
be dependent on Src and EGFR kinase activity [191]. As 
mentioned above, cadmium appears to act on the estrogen 
receptor. Further evidence of this hypothesis comes from 
studies showing inhibition or knockdown of estrogen 
receptor prevents cadmium-induced AKT activation [141, 
189]. There is a direct link of the regulatory p85 subunit of 
PI3K with the estrogen receptor [193] providing a likely 
mechanism for cadmium-induced PI3K-AKT activation via 

estrogen receptor. These data strongly suggest cadmium can 
induce cell transformation and tumor angiogenesis and that 
PI3K-AKT signaling may play a significant role in these 
processes. Further study is warranted to clarify if cadmium 
can induce cell migration, invasion, and proliferation, among 
other cancer cell characteristics and to what extent the PI3K-
AKT signaling pathway is involved. 

HEAVY METALS AND MTOR/P70S6K1 SIGNALING 

Mammalian target of rapamycin (mTOR) has two 
complexes, mTORC1 and mTORC2, with distinct regulation 
and function in the cells. mTORC1 contains raptor and 
PRAS40 with raptor acting as a scaffold protein to link 
mTOR kinase to substrates. mTORC2 contains rictor, 
mSin1, and PRR5/protor with rictor and mSin1 promoting 
mTORC2 assembly and signaling. Both mTORC1 and 
mTORC2 contain mLST8/G L and deptor with mLST8/G L 
binding to the mTOR kinase domain in both complexes and 
deptor is an inhibitor subunit to both complexes. mTORC1 
mediates protein synthesis, cell proliferation, growth, and 
metabolism in response to growth factors and changes in 
nutrient levels [194]. Low levels of growth factors and cell 
stress reduce mTORC1 action on biosynthesis. Raptor binds 
directly to mTOR motifs on downstream molecules such as 
p70S6K1 and 4EBP1 [195-197]. mTORC1 is sensitive to 
rapamycin whereas mTORC2 is not. TSC1/2 can regulate 
mTORC1 activity as TSC2 has a GTPase activating domain 
that converts Rheb to a GDP-bound state preventing its 
activation of mTORC1 signaling [194, 198]. Alternatively, 
TSC1/2 are activators of mTORC2 by a yet undefined 
mechanism. PI3K and MAPK signaling inhibits TSC1/2 
allowing increased mTORC1 activity. AMP activated 
protein kinase (AMPK) is a master regulator of cellular 
energy metabolism. If AMPK is activated by a high 
AMP/ATP ratio, AMPK will phosphorylate TSC2 to 
decrease its inhibition of Rheb further depressing mTORC1 
activity [199]. Amino acid insufficiency rapidly induces a 
decrease in mTORC1 activity but the mechanism is not well 
understood. There is a well understood feeback loop where 
mTOR1/p70S6K1 signaling leads to phosphorylation of 
insulin receptor substrate (IRS-1) uncoupling the insulin 
receptor from PI3K thereby reducing PI3K signaling [200]. 
Whereas AKT is an activator of mTORC1, AKT is a 

substrate for mTORC2 promoting cell proliferation, survival, 
and migration. 

Arsenic 

Accumulated evidence suggests arsenic activates 
mTOR/p70S6K1 signaling. Our lab and others have shown 
arsenic exposure leads to increased activation of p70S6K1 
[123, 154, 155, 163, 164, 169, 201, 202] in an mTOR-
dependent manner [155, 164, 169, 201, 202]. Arsenic can 
also increase the phosphorylation of 4E-BP1 in an mTOR-
dependent manner [202] further suggesting arsenic is 
upregulating this pathway. Furthermore, arsenic increased 
the binding of eIF4E with 4E-BP1 [202, 203], which is 
commonly induced by mTOR activation. Another molecule 
that is regulated by mTOR appears to be HIF-1  as our lab 
has shown arsenic increases HIF-1 signaling in an mTOR-
dependent manner [164]. 

Signaling through mTOR/p70S6K1 also appears crucial 
to arsenic-induced cell transformation. Our lab has recently 
shown that bronchial epithelial cells exposed to arsenic for 
26 weeks leads to increased proliferation and anchorage-
independent growth [163]. These cells can also form primary 
tumors in vivo (unpublished observations

1
). Both mTOR and 

p70S6K1 were constitutively activated in these cells and 
interruption of this pathway reduced both cell proliferation 
and anchorage-independent growth [163]. These results 
would suggest the mTOR/p70S6K1 pathway is not only 
activated with arsenic exposure, but also plays a critical role 
in arsenic-induced cell transformation. 

Multiple mechanisms may mediate arsenic-induced 
mTOR/p70S6K1 signaling. Our lab has shown that p70S6K1 
activation by chronic arsenic exposure is dependent on ROS 
as catalase could inactivate p70S6K1 under these conditions 
[163]. Arsenic-induced p70S6K1 activation is dependent on 
PI3K activity [155, 164, 169, 202, 204], consistent with 
previous results that AKT can activate mTOR-p70S6K1 
signaling [205-209]. ROS may also play a role in arsenic-
induced p70S6K1 activation as ROS scavenging prevents 
arsenic-induced p70S6K1 activation [169, 204]. Calcium 
chelators also prevented arsenic-induced p70S6K1 activation 
[169]. MAPK pathways may also participate as a p38 MAPK 
inhibitor partially inhibited arsenic-induced p70S6K1 
activation [202]. Details regarding the mechanism of arsenic-
induced activation of mTOR/p70S6K1 signaling are not 
clear, but these studies suggests upstream signaling pathways 
mediate mTOR/p70S6K1 activation with arsenic exposure. 
There is no evidence to this point that would suggest arsenic 
directly activates mTOR/p70S6K1 molecules. 

Chromium 

There are no published reports regarding chromium and 
mTOR/p70S6K1 signaling. Considering chromium has been 
shown to activate PI3K/AKT signaling [124, 177, 178] and 
AKT is a well-known activator of mTOR/p70S6K1 signaling 
[152, 205-209], it is unexpected to see no reports of 
chromium-induced mTOR activation yet. 

                                                             
1Cells transformed in culture by arsenic exposure were observed to form tumors 

subcutaneously in nude mice. 
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Nickel 

The only evidence nickel can activate mTOR/p70S6K1 
signaling is nickel induction of p70S6K1 phosphorylation 
[179] but there is no published evidence that nickel activates 
mTOR or increases its kinase activity. Nickel-induced 
p70S6K1 activation was prevented with PI3K inhibitors 
[179], consistent with previous reports showing PI3K/AKT 
signaling can activate mTOR/p70S6K1 signaling [205-209]. 
Downstream of mTOR, rapamycin reduced nickel-induced 
VEGF induction and HIF-dependent transcriptional activity 
[210]. This is an interesting finding considering nickel can 
directly induce HIF-1 expression via inhibition of prolyl 
hydroxylases [211]. If mTOR signaling participates in 
nickel-induced hypoxia signaling, further investigation is 
needed to understand the role of mTOR in nickel 
carcinogenesis. 

Cadmium 

Published reports show that cadmium exposure can lead 
to phosphorylation of mTOR [186, 187, 212], p70S6K1 
[137, 138, 186, 187, 212, 213], and 4E-BP1 [212], which is 
downstream of mTOR. Our lab has shown cadmium can 
induce cell transformation and these transformed cells can 
form primary tumors and induce tumor angiogenesis [138]. 
We also found cadmium increased expression levels of HIF-
1  and VEGF, with HIF-1  expression dependent on 
p70S6K1 activity [138]. The mechanism by which cadmium 
activates mTOR and downstream signaling is not clear, but 
ROS and PI3K signaling likely contributes to that. We found 
cadmium could induce ROS generation and reduction of 
ROS levels with either catalase or diphenylene iodonium 
(DPI) prevented activation of p70S6K1 by cadmium [138]. 
Others have reported similar findings [186]. We also found 
cadmium-induced activation of p70S6K1 was dependent on 
PI3K activity [138], which was expected as PI3K-AKT 
signaling is known to activate mTOR signaling. Similar 
finding have been shown elsewhere with overexpressed 
PTEN, which prevents PI3K signaling, preventing cadmium-
induced p70S6K1 activation [186]. These studies provide 
intriguing evidence for cadmium carcinogenesis considering 
mTOR and p70S6K1 can be strongly activated by cadmium. 
However, whether this pathway regulates any aspect of 
cadmium carcinogenesis is not yet known. Further 
investigation into the role of mTOR/p70S6K1 signaling in 
cadmium carcinogenesis is warranted. 

CHEMOPREVENTION AND THERAPY 

Naturally occurring compounds are often proposed for 
prevention of disease and some of these compounds may 
have application to prevention of heavy metal-induced 
cancers. Apigenin is a naturally occurring flavone that is 
consumed via fruits and vegetables. Our lab has shown 
apigenin can inhibit cell growth and tumor angiogenesis via 

inhibition of VEGF and HIF-1 [214-217]. We also showed 
apigenin inhibition of VEGF and HIF-1 was via inhibition of 
PI3K-AKT-p70S6K1 signaling [215]. In addition, apigenin 
has been shown to inhibit EGFR [218]. Resveratrol is a 
naturally occurring phytoalexin that exists in the skin of 
grapes, with lower levels in wine and grape juice, as well as 
other fruits and nuts. Our lab has shown resveratrol inhibits 
HIF-1 and VEGF expression in cancer cells [219]. 

Resveratrol has further been shown to inhibit EGFR-ERK1/2 
and PI3K-AKT-mTOR signaling while enhancing anti-tumor 
effectiveness of the mTOR inhibitor rapamycin [220-222]. In 
addition, resveratrol can decrease cell proliferation and 
tumor angiogenesis while also increasing cell apoptosis  
[223, 224]. Several heavy metals can induce ROS and our 
lab has shown resveratrol can scavenge oxidative radicals 
and reduce cellular responses to ROS generation [225]. 
Curcumin is a naturally occurring polyphenol derived from 
the Indian spice turmeric. Curcumin has been shown to 
inhibit several signaling molecules including EGFR, AKT, 
cyclin D1, NF- B, and AP-1 among others [226]. Curcumin 
also decreases cell proliferation, tumor growth, and tumor 
angiogenesis while increasing apoptosis [224]. Evidence 
indicates several heavy metals utilize signaling molecules 
that can be regulated by naturally occurring substances such 
as apigenin, resveratrol, and curcumin. While the main 
complication for these compounds is in vivo bioavailability, 
they may provide a viable preventative option to persons 
with a high risk of heavy metal exposure. 

Treatment of cancers formed from exposure to heavy 
metals is an important area for future research efforts. As 
mentioned above, EGFR, PI3K, and mTOR signaling are 
often activated in cells exposed to heavy metals, making 
these pathways attractive targets for therapy of metal-
induced cancer. Several different drugs that antagonize these 
pathways are currently undergoing clinical trials. Both 
gefitinib and erlotinib inhibit the EGFR tyrosine kinase 
domain with some success in clinical trials and may provide 
therapy to cancers with EGFR activating mutations [227]. 
Cetuximab is a monoclonal antibody directed against EGFR 
that may provide a therapeutic option to cancers with EGFR 
amplification, which has been seen in cells exposed to heavy 
metals [116, 122, 127]. Many inhibitors to the PI3K pathway 
have problems with toxicity as they target the ubiquitous  
and  p110 isoforms. The drug often used in basic research 
to target PI3K is LY294002, however this compound has 
several issues to prevent in vivo efficacy. SF1126 is a 
prodrug of LY294002 designed to be more soluble, target 
tumor tissue, and have increased tolerability in patients 
[228]. SF1126 is currently undergoing a Phase I clinical trial 
to determine its safety and tolerability in patients. 
Temsirolimus, an ester of the mTOR inhibitor rapamycin, 
was seen to specifically decrease mTOR activity [229] and 
improve survival in patients with metastatic renal-cell 
carcinoma compared to interferon-  [230]. mTOR has 
negative feedback on AKT activation, thus inhibition of 
mTOR increases activity of AKT providing a possible 
mechanism for resistance to mTOR inhibition [231]. This led 
to development of compounds such as NVP-BEZ235, which 
is an mTOR-PI3K dual inhibitor [232]. NVP-BEZ235 has 
shown effectiveness with treating tumors in animals [233-
236], and is currently in clinical trials for solid tumor types. 
Considering the propensity for some heavy metals to 
augment signaling through EGFR, PI3K, and mTOR, these 
compounds may be useful in patients with cancers from 
heavy metal exposure. 

FUTURE PROSPECTUS 

Literature clearly shows exposure to heavy metals alters 
flux through signaling pathways, but future research should 
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answer how this signaling relates to metal-induced cancer 
and how metals are activating these pathways. Metals could 
directly activate these pathways such as nickel replacing iron 
in prolyl hydroxylases leading to stabilization of HIF-1  
protein [211]. However, instances of direct activation of 
signaling molecules are infrequent with different metals. 
Much effort in future research will likely focus on cellular 
changes that lead to increased signaling such as metal-
induced epigenetic alterations and changes in microRNA 
expression. Several metals have shown to induce chromatin 
alterations, which could lead to overexpression and potential 
amplification of certain genes that are part of proliferative 
signaling pathways. While ongoing research on miRNA 
function and targets is plentiful, there are still considerable 
discoveries to be made about the contribution of miRNAs  
to normal cell function as well as its role in disease 
development such as cancer. Heavy metal exposure is likely 
to alter expression of certain miRNAs leading to changes in 
signaling causing cellular changes leading to a cancer cell 
phenotype. Another interesting set of molecules are free 
radicals and reactive oxygen and nitrogen species. Several 
heavy metals induce oxidative stress, but the precise role that 
plays in heavy metal-induced cancer and the mechanisms by 
which oxidative stress is increased are not well understood. 
To elucidate promising drug targets, molecular targets must 
be studied for their ability to control an in vivo tissue 
response such as tumor initiation, tumor growth, and tumor 
angiogenesis when exposed to heavy metals. 
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