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Cancer cells increase glucose uptake and reject lactic acid even in the presence of oxygen (Warburg effect). This
metabolism reorients glucose towards the pentose phosphate pathway for ribose synthesis and consumes great
amounts of glutamine to sustain nucleotide and fatty acid synthesis. Oxygenated and hypoxic cells cooperate and
use their environment in a manner that promotes their development. Coenzymes (NAD+, NADPH,H+) are
required in abundance, whereas continuous consumption of ATP and citrate precludes the negative feedback
of these molecules on glycolysis, a regulation supporting the Pasteur effect. Understanding the metabolism of
cancer cells may help to develop new anti-cancer treatments.
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1. Introduction

In contrast to normal cells which arrest glycolysis in the presence of
oxygen and favor oxidative phosphorylation-ATP production (OXPHOS),
cancer cells lose this regulation and favor glycolysis-producing lactate.
This “aerobic glycolysis” was first observed by Otto Warburg in the
1920s [1]. The Warburg effect has led to increasing data focusing on
the signaling pathways that conduct this reprogramming [2–6]. Under-
standing the biochemical routes that redirect the metabolism towards
biosynthesis may be a source of inspiration for developing new anti-
cancer treatments. The aimof this review is to dissect themain biochem-
ical routes involved, although some of them remain partly deductive,
emphasizing the importance of molecules such as NAD+, ATP and cit-
rate, for regulating and driving these pathways.

2. The metabolism of cancer cells: The importance of the Warburg
effect and loss of the Pasteur effect

The biochemical metabolism of cancer cells is disrupted in order to
promote the production of lactate, despite the presence of O2.

2.1. The Warburg effect

Cancer cells synthesize great amounts of nucleotides, macromole-
cules and lipids, and these biosynthesis require continuous production
of NAD+, NADPH,H+ and ATP. They consume at least 10 times more
glucose than normal cells [5,7,8] and produce lactic acid, even in the
presence of oxygen. High rates of glucose uptake have been clinically
used to detect tumours by positron emission tomography with a glu-
cose analogue tracer (PET) [9]. Aerobic glycolysis was considered by
Warburg as a defect in mitochondrial respiration [8] and/or in ATP pro-
duction by others (for review [5]) implying: - F1/F0 ATPase defect or
mitochondrial content depletion [10]–SCO2 (synthesis of cytochrome c
oxidase 2) defect, since aerobic glycolysis is reversed by re-expressing
SCO2, an assembly factor controlled by p53 entering in complex IV
[11]; an abrogation of proton gradient by uncoupling proteins (UCP)
such as UCP2, which are overexpressed in various cancer cells [12,13];
cardiolipin abnormalities also favoring the dissipation of energy [14];
and mutations in certain electron transport chain (ETC) complexes
encoded by mtDNA exposed to ROS damage because mtDNA is not
surrounded by histones [15–18]; however, mitochondrial mutations are
inconsistently observed [19–26] or remain silent [27].

In contrast to these hypotheses,many cancer linesmay not be inher-
ently more glycolytic than normal cells [28], and/or may not generate
defective OXPHOS production [29]; their aerobic glycolytic phenotype
could be a normal adaptation to a hypoxic environment. The ATP pro-
duction mode of cancerous and normal cells of the same origin should
be compared [28–30], and it is likely that the part of glycolysis depends
on the type of cancer cell and onmicroenvironment, whichmay ormay
not provide oxygen and nutrients in abundance. Interestingly, the
Warburg effect is not believed to exclusively concern cancer cells, but
also embryonic proliferative cells [21].

Cancer cells located inwell-oxygenated areas divide themost rapidly,
thus favoring OXPHOS production of ATP, in contrast to more hypoxic
cells [29,31–33], which need to consume larger amounts of glucose,
since OXPHOS is slowed down or arrested, a downregulation which
might avoid excessive ROS production [34,35]. In the highly hypoxic
core areas of tumors [36,37], glycolysis necessarily becomes the main,
if not the unique cause of ATP generation. It is not so surprising that
these “hardy cells” correspond to higher malignancy grades [32,38], be-
cause hypoxia forces them to adapt and develop several strategies to
avoid apoptotic or necrotic death: overexpression of oncogenes, such
as hypoxia-inducing factor-1 (HIF-1) which promotes hypoxic metabo-
lism [39,40]; overexpression of UCP2 which can reduce ROS production
[12,13]; over-activation of cytosolic dehydrogenases, in particular of
lactate dehydrogenase A (LDH-A) which produces more NAD+ which
is crucial for glycolysis function [13,41–43]; overexpression of anti-
apoptotic proteins such as Mcl-1 and Bcl-xL [44–46]; and activation of a
mitochondrial autophagy protective effect [47–50].

2.2. Lactic acid production

Lactate production is an essential feature of cancer cells. The isoform
LDH-M, which is regulated by the c-Myc [51] and/or HIF-1 target gene
LDH-A [43], transforms pyruvate into lactate. This route is favored be-
cause the conversion of pyruvate in acetyl-CoA through pyruvate dehy-
drogenase (PDH) is inactivated by pyruvate dehydrogenase kinase 1
(PDK1) [52–54]. This blockade leads to an uncoupling between glycoly-
sis and the TCA cycle (Fig. 1), which drives pyruvate away from acetyl-
CoA generation and causes a reduction in the quantities of NADH and
FADH2 delivered to ETC, decreasing ROS production, especially when
limited levels of O2 are present [18,43].

2.3. The main role of HIF-1α in the loss of the Pasteur effect

In the presence of O2, normal cells arrest glycolysis (Pasteur effect)
in favor of OXPHOS, producing 18 times more ATP than glycolysis.
This effect may be related to HIF-1α [40,43,55], which modifies the
expression of numerous genes involved in glycolysis, lactate produc-
tion and extrusion, angiogenesis and metastasis [56,57]. The kinase
mTOR stimulated by AKT favors HIF-1α transcription [58]. HIF-1α is
a major determinant of the glycolytic phenotype because it activates
glucose transporters (GLUT), several key enzymes of glycolysis such
as hexokinase II (HKII), phosphofructokinase (PFK) and pyruvate
kinase M2 (PKM2) [4,6,43,52,55,59–61]. It also stimulates LDH‐A
and PDK1, promoting lactic acid production [52,53,59,62]. HIF-1α
is normally inactivated in an oxygen-dependent manner by prolyl
hydroxylase domain protein (PHD), which allows HIF-1α recognition
by the von Hippel–Lindau (VHL) protein complex, the latter addressing
HIF-1α for poly-ubiquitylation and destruction at the proteasome
[63,64]. In hypoxia (defined as ≤2% O2), HIF-1α protein expression
levels increase graduallywith O2 concentration [32,65,66]. The potential
reasons for HIF-1α escaping inactivation in normoxia includemutation of
the von Hippel–Lindau (VHL) protein [67] and inhibition of PHD by suc-
cinate and fumarate as a result of mutations in succinate dehydrogenase
(SDH) and/or fumarate hydratase (FH) [68–70], which act as suppressor
genes since their mutations lead to the development of many tumours
[71,72]. Moreover, pyruvate or oxaloacetate (OAA), which accumu-
late in hypoxia, activate HIF-1α in a feedback loop, even upon re-
oxygenation [73]. Lactate also induces HIF-1α activation [74].

3. Major catabolic pathways

3.1. Glycolysis

To provide essential molecules (ribose, glycerol, serine, etc.) for bio-
synthesis, glycolysis is slowed down at its end, where pyruvate kinase
(PK) converts phosphoenolpyruvate (PEP) into pyruvate, which leads
to the production of ATP. This blockade is related to re-expression of
PK in its embryonic form (PKM2), which is less active than the adult
form. PKM2 plays a key role in the Warburg effect [75–77], and favors
the transcription of HIF-1α in the nucleus [78]. The dimeric phosphory-
lated form of PKM2 is inactive and causes a bottleneck, favoring glucose
metabolism towards biosynthesis. In contrast, the dephosphorylated
tetrameric form leads to ATP and lactic acid production [21,76,77]. The
switch from the inactive to the active form is an oscillating process, con-
trolled by allosteric regulation implying the concentration of F1,6P and
serine [79,80], and by covalent regulation through protein kinase A
[75,76,79]. The binding of phosphotyrosine peptides to PKM2 results
in the release of its main allosteric activator F1,6P [81,82], whereas
phosphatase PP2A deficiency is thought to play a key role in the modu-
lation activity of PKM2 [22]. Due to PKM2 dimeric preponderance in
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cancer cells [80], pyruvate production derived from glucose is reduced
and other sources of pyruvate are needed to sustain LDH activity.
Pyruvate may derive from alanine by transamination (ALAT) and/or
from malate decarboxylation by ME [83]. PEP, which accumulates
above the bottleneck, acts as a feedback inhibitor of triose phosphate
isomerase (TPI) [60]. This inhibition results in equal production of dihy-
droxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate
(GA3P). DHAP feeds glycerol formation for triglyceride synthesis,
whereas GA3P sustains PPP for ribose synthesis [60]. GA3P also sustains
3-phosphoglycerate (3-PG) production involved in serine synthesis
[84]. PEP may bypass the PKM2 bottleneck and be converted into pyru-
vate, through an alternative pathway that does not generate ATP, hence
avoiding the negative control on PFK1 [85]. Because alternative oscilla-
tion between the active and inactive forms of PKM2 is required to
produce ATP (but only 2 molecules per glucose), it is likely that
other sources of ATP are involved, through mitochondrial oxidation
of glutamine or fatty acids.

3.2. Other routes for glucose: Pentose phosphate pathway (PPP) and
glycogen storage

Glucose 6-phosphate (G6P) can be used by the PPP to produce ribose
5-phosphate (R5P) which is required in abundance for nucleotide
synthesis [86]. If the oxidative part of PPP is involved, it also produces
NADPH,H+, required for DNA, fatty acid synthesis and the redox system.
The balance between the engagement in the oxidative or the
non-oxidative part of PPP is regulated by the availability of glucose
6-phosphate (G6P) and NADPH,H+ [87] which control glucose
6-phosphate dehydrogenase (G6PDH), the first enzyme in the oxida-
tive part of PPP. F1,6P which accumulates above the PKM2 bottle-
neck may inhibit G6PDH, limiting the participation of the oxidative
branch of the PPP in R5P synthesis [83]. In addition, GA3P is converted
into R5P by transketolase (TKTL) and aldolase of the non-oxidative
part of PPP. TKTL1 isoform is activated and overexpressed in various
cancers, correlating with invasiveness and poor outcome [83,88,89].
Another mechanism could promote the non-oxidative branch of PPP:
the inhibition of PFK1 activity results in an increase in F6P that can be
channeled into the non-oxidative branch of PPP [90]. Glucose can be
stored as glycogen in tumours [91], through glycogen synthase activity,
which is inhibited through phosphorylation by glycogen synthase
kinase-3 (GSK3). The latter enzyme is thought to play a suppressor
role [92], and is inhibited by the PI3K/AKT signaling pathway [93].
Due to GSK3 inactivation, cancer cells may store glycogen in abnor-
mal quantities, which could be used when their microenvironment
is impoverished in glucose [30] by glycogen phosphorylase activa-
tion [94].

3.3. Proteolysis provides intermediates for the TCA cycle and base synthe-
sis, and sustains the LDH reaction

Cancer cells consume great quantities of amino acids, especially
glutamine (Gln) [83,90,95–97], which is the preferential mode of trans-
portation of blood nitrogen (NH4), and alanine derived from muscle
proteolysis, hence favoring cachexia [98]. The rate of consumption is
not explained by protein synthesis because it 10 times in excess of the
need for essential amino acids [95]. This could be related to the
proteolysis-inducing factor (PIF), a catabolic factor produced by tumors
which stimulates proteolysis in skeletal muscle [99]. Gln is transported
at the plasma membrane [100] and provides amine groups for nucleo-
tides, amino acids, tetrahydrofolate and gluthation synthesis. Gln is
converted by the mitochondrial enzyme glutaminase (GLS) into gluta-
mate (Glu), which is transformed by glutamate dehydrogenase (GDH)
into α-KG. This intermediate could replenish the TCA cycle, producing
OAA, or be expelled outside mitochondria to feed the transaminase
reactions that produce aspartate (ASAT) and pyruvate (ALAT) (Fig. 1).
Finally, up to 60% of Gln can be converted into lactate [101]. Although
the conversion of Gln and Glu is typically bidirectional, the reaction
towards Glu is favored by a high Gln input and by overexpression
of GLS under c-Myc control [102] and/or suppression of glutamine
synthase (GS) [83,103,104].

Glutaminolysis may be the main source of OAA required for TCA
cycle function [105], which requires this molecule to be reformed
at each cycle. Pyruvate carboxylase (PC), which forms OAA from
pyruvate [106,107], is thought to be relatively inactive in cancer
cells, because acetyl-CoA, its allosteric activator, is consumed by
high CS activity [108]. Finally, glutamine provides a great proportion
of citrate, either through glutaminolysis [90] or through the IDH
route in case of defective OXPHOS [105]. Citrate subsequently sus-
tains de novo lipid synthesis, the LDH route and/or the transaminases
cascade (ALAT and ASAT) in a direction that consumes glutamine
and alanine.

3.4. Lipolysis may produce an essential part of ATP

The consumption of lipids by cancer cells remains to be further
investigated. Cancer cells induce lipolysis in adipose tissues, a char-
acteristic of cachexia, by producing lipid mobilization factors [99].
It is often considered that β-oxidation is suppressed in tumor cells
because glycolysis is physiologically activated while β-oxidation is
inactivated (and vice versa), and because the PI3K/AKT signaling
pathway promotes glycolysis and lipid synthesis [109]. However,
from a theoretical point of view, the products of β-oxidation
(i.e. acetyl-CoA, NADH,H+ and ATP) inhibit PDH, whereas ATP in-
hibits PK [87,110,111]. Both retroactions reinforce the PK bottleneck
and the aforementioned PDH inactivation. Therefore, β-oxidation
could be active concurrently to glycolysis in cancer cells, producing a
large share of the acetyl-CoA that feeds the CS reaction, rather than py-
ruvate, which is directed towards lactate production. β-Oxidation is a
highly energetic pathway, the complete oxidation of palmitate, a
common fatty acid of 16 carbons, resulting in the formation of 106
ATP. It has recently been reported that environmental adipocytes may
act as an essential energy storage solution for ovarian cancer cells,
providing cancer cells with fatty acids [112]. Therefore, the inhibition
of β-oxidation could offer a new therapeutic strategy for counteracting
cancer growth, given that the inhibition of the mitochondrial transport
of fatty acid may induce cancer cell death [113].

4. Citrate, cofactors (NAD+, NADPH,H+) and waste products
sustain and promote biosynthesis

4.1. The role of citrate in ATP production

Complete oxidation of glucose and of glutamine (glutaminolysis)
produces 36 ATP and 9 ATP respectively. Glycolysis is fundamental
because it provides intermediates required for proliferation (ribose for
nucleotides, glycerol formembrane and serine for tetrahydrofolate syn-
thesis). Although glycolysis is an inefficient way to produce energy
(2 ATP products per metabolized glucose), its capacity to very quickly
adjust ATP production to the considerable input of glucose could give
a selective advantage to proliferative cells [2,114]. Furthermore, ATP is
maintained at a low level, precluding the negative feedback of ATP on
PFK1. To override this inhibition, PFK2 (also referred to as PFKB3) acti-
vation appears fundamental in cancer cells [87,115], and could play a
major role in the deregulation that leads to the loss of the Pasteur effect.
PFK2 interconverts fructose-6-phosphate into fructose 2,6-bisphosphate
(F2,6P), which is a powerful allosteric activator of PFK1, promoting
glycolysis, whereas its nuclear overexpression promotes the cell cycle
[116–118]. F2,6P is a p53 target which represses glycolytic flux by pro-
moting TIGAR synthesis (TP-53 induced glycolysis and apoptotic regula-
tor) which dephosphorylates F2,6BP [47,119]. PFK1 and PFK2 are also
dependent on citrate [120,121], which is a powerful physiological cen-
sor of ATP production, allowing close adjustment of metabolic flow
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through feedback reactions on key regulator enzymes, not only of
glycolysis but also of TCA cycle (PDH, SDH, and malate dehydroge-
nase: MDH) [122–124]. Therefore, in normal cells, when sufficient
quantities of citrate are produced by mitochondria, citrate accumu-
lates outside mitochondria and blocks PFK1 and PFK2 [120,121],
whilst simultaneously blocking the TCA cycle which results in the
arrest of ATP synthesis [115]. It is likely that cancer cells avoid this
citrate feedback on PFK, supporting the Pasteur effect, presumably
because citrate is continuously catalyzed by ATP citrate lyase
(ACLY) or by isocitrate dehydrogenase (IDH). As expected, ACLY
inhibition [125] or cancer cell exposure to citrate blocks glycolysis
and leads to cell death in a dose-dependent manner [126,127].

The ACLY route is presumably favored in cancer cells because the
TCA fluxmay be slowed down or inactivated below CS at various levels:
aconitase, could be inactivated by HIF1-α [39] or by nitric oxide (NO)
[128]; α-ketoglutarate dehydrogenase (α-KDH), an enzyme very simi-
lar to PDH could be inactivated by the same mechanisms; and SDH
could be inactivated either by citrate [123], malonate (derived from
malonyl-CoA)[87] or by mutations [71,72].

The ACLY reaction provides abundant acetyl-CoA for enhanced de
novo lipid synthesis, the first enzyme involved in this synthesis –

acetyl-CoA carboxylase (ACC) – being activated by citrate [87]. ACLY
also provides OAA, which is transformed into malate by MDH, produc-
ing cytosolic NAD+ [83]. Malate returns into mitochondria through
the malate/aspartate shuttle (Fig. 1), or is preferentially transformed
into pyruvate by malic enzyme (ME), producing NADPH,H+ [83]. In
hypoxic cancer cells, it is likely that the malate/aspartate shuttle is
unprimed [22], because TCA-OXPHOS function is slowed down or
arrested. In normoxia, glutamine oxidation feeds the TCA cycle
which results in producing OAA which feeds nucleotide synthesis
through the aspartate shuttle. Of note, enhanced ACLY activity
lowers the cytosolic citrate level, avoiding its negative feedback
on PFK. However, when de novo lipid synthesis is slowed down or
inactivated, citrate could be transformed into isocitrate by aconitase and
then into α-ketoglutarate (α-KG) by IDH. α-KG could feed the TCA
cycle or could be diverted towards alanine aminotransferase (ALAT), pro-
ducing glutamate and pyruvate. It could also be used bymutant IDH, pro-
ducing 2 hydroxyglutarate (2-HG), a product presenting oncogenic
properties [129,130]. Interestingly, in hypoxic situations, the IDH route
could be used in a reversed manner to produce citrate, from glutamine-
derived α-KG [105].

4.2. NAD+ production is crucial for cancer cell growth regulation

Cancer cells require an abundance of NAD+, which must be re-
generated by cytosolic dehydrogenases such as MDH, LDH and glycerol
phosphate dehydrogenase (GPDH). The influence of NADH oxidase,
which plays a role in inhibiting reactive oxygen species (ROS), to restore
the NAD+ pool remains to be studied. NAD+ supports glycolysis at glyc-
eraldehyde 3-phosphate dehydrogenase (GAPDH) level, and pyrimidine
synthesis at the dihydro-orotate dehydrogenase reaction. NAD+ also
controls the differential regulation of HIF-1α and HIF-2α by sirtuin 1
(SIRT1), an NAD+-dependent deacetylase [39]. High levels of NAD+ ac-
tivate SIRT1, which results in decreased HIF-1α transcriptional activity
and enhanced HIF-2α-mediated stimulation of target genes, including
erythropoietin, angiogenic factors and aconitase stimulation[39,131]. Al-
though HIF-1α and HIF-2α share certain redundant functions, they ex-
hibit unique and even opposing activities in cell growth, metabolism,
angiogenesis, nitric oxide production and other processes that affect
tumor growth [39]. For example, HIF-1α stimulates NO production by
nitric oxide synthase (iNOS) aimed at restoring local pO2, in contrast to
HIF-2α.

NAD+ is also required by poly(ADP-ribose) polymerase (PARP) for
efficient base-excision repair of apurinic sites, since cancer cells pres-
ent frequent DNA breakage that requires repair [79,132,133]. Thus,
the metabolic Achilles' heel of the tumor metabolome could be its
sensitivity to a reduction of NAD+ levels caused by activation of
poly(ADP-ribose) polymerase after DNA damage [79]. Interestingly,
Weinhouse contested Warburg's ideas, arguing that cancer cells
may have normal OXPHOS capacity if supplemented with NAD+

[30,134].

4.3. NADPH,H+ production sustains lipid synthesis and the redox system

NADPH,H+ is consumed in large quantities by reductive biosynthe-
sis of fatty acids, nucleotides and amino acids [2,3,6,21,22,59,132]. For
example, palmitate synthesis – amajor lipid constituent ofmembrane –
requires 14 molecules of NADPH,H+. This cofactor also plays a major
role as an anti-oxidant, maintaining the pool of reduced glutathione
(GSH), a molecule that plays a key role in the detoxification system.
ROS promote proliferation via several mechanisms (DNA mutations,
phosphatase inhibition generating a brake on protein kinases, etc.)
[135,136]. However, when present in excess, ROS create oxidative dam-
age that leads to cell death. NADPH,H+ is also required for the redox
state of cytochrome c, the lack in oxidized cytochrome c preventing
apoptosis induction [137]. For that purpose, NADPH,H+must be contin-
uously regenerated either by the oxidative part of PPP and/or by malic
enzyme (ME), the contribution of the latter becoming essential in
cells favoring non-oxidative PPP through TKTL1 activation [83,101].
The role of enzymes such as isoforms of IDH [138,139,79] in NADPH,
H+ production remains to be investigated, given that IDH mutations
may be associated with better survival in glioblastoma [140].

4.4. Waste products and cooperative symbiosis sustain survival and
proliferation

Acidosis is often associated with hypoxia, but can also be ob-
served in the microenvironment under normoxia conditions [141].
This acidification could be the “raison d'être” of the Warburg effect,
promoting cancer cell invasion and spread [142–146], favoring ex-
tracellular degradation and selecting phenotypes that are resistant
to apoptosis [142,147–149]. In order to acidify their microenviron-
ment, cells extrude lactate via the monocarboxylate transporter 4
(MCT4), regulated by HIF-1 [150] (Fig. 2) and eject protons through
several systems, such as the V-ATPase [3] or the sodium-proton ex-
changer 1 (NHE1) [151–153]. This anti-porter requires to be coupled
with the sodium-potassium (Na+/K+)-ATPase to avoid the accumu-
lation of sodium in the cytosol [154–156]. Because ATP hydrolysis
has been found to be proportionate to lactate formation [157], the
overall activity of the (Na+/K+)-ATPase observed in fully oxygenat-
ed cancer cells could be due to increased lactic fermentation rates, as
observed in non-transformed muscle cells [30,158]. To avoid intra-
cellular acidification leading to restricted ribosomal biogenesis
[159] and cell cycle arrest [160], it is crucial for cancer cells to export
protons. CO2 produced mainly by oxygenated cancer cells is both a
source of microenvironment acidification and of cell cytoplasm alka-
linization. It is evacuated and hydrated by carbonic anhydrase-9
(CA-9), a transmembrane enzyme which is overexpressed in various
cancer cells [161,162]. CA-9 converts CO2 into HCO3− and H+ which
acidifies the microenvironment, whereas HCO3− returns inside cells
to maintain a neutral or alkaline pH which favors LDH-5 and PFK1
activities [163,164].

Cells reject lactate, hence favoring tumor angiogenesis [74], reduc-
ing cell adherence by stimulating the production of hyaluronan [146]
and playing an immunosuppressive role against cytotoxic T cells
[165]. Cells also reject alanine and glutamine when in excess, and it
has been estimated that more than half of glutamine-derived carbon
could be secreted as lactate and alanine [96,101]. These molecules
may serve to reproduce glucose by liver gluconeogenesis (Cori cycle).
Lactate can be used by oxygenated cancer cells as oxidative fuel. For
that purpose, it may be transported by MCT1 in well-oxygenated cells
and used to reform pyruvate (through LDH-1 encoded by LDH-B)



Fig. 1. Amodel of the biochemical pathways in cancer cells.Well‐oxygenated cells proliferate at a higher rate and consume great amounts of substrates to proliferate. The low activity of PKM2
creates a bottleneck at the end of glycolysis, diverting glucose transformation towards biosynthesis (nucleotides, lipids, etc.) rather than pyruvate formation. PDH slowdown favors an
uncoupling between glycolysis and TCA, which is supplemented preferentially by glutaminolysis and/or β oxidation resulting inα-keto and acetyl-CoA production, feeding aspartate (derived
from OAA) and citrate formation. Citrate moves outside mitochondria, where ACLY reforms acetyl-CoA and OAA. Acetyl-CoA feeds lipid synthesis and target acetylation (histones, proteins,
etc.). OAA is converted into malate by MDH or into aspartate by ASAT, which feeds nucleotide synthesis. Malate may return into mitochondria through the malate/aspartate shuttle or may
be preferentially transformed into pyruvate by ME, feeding the LDH reaction. The malate/aspartate shuttle operates with two antiporters: one enters malate in mitochondria in exchange
for α-KG, whilst the other releases aspartate from the mitochondria in exchange for glutamate. Cytosolic dehydrogenases (MDH, LDH, GPDH) regenerate NAD+, whereas the oxidative part
of the PPP, and/or ME provides NADPH,H+. ACLY: ATP citrate lyase, Ala: alanine, ALAT: alanine amino transferase, ASAT: aspartate amino transferase, 1,3BPG: 1,3-bisphosphoglycerate,
DHAP: dihydroxyacetone phosphate, F1,6P: fructose 1,6 diphosphate, GA3P: glyceraldehyde 3-phosphate, GAPDH: glyceraldehyde 3-phosphate dehydrogenase, Gln: glutamine, Glu:
glutamate, GPDH: glycerol phosphate dehydrogenase, α-KG: α-ketoglutarate, LDH: lacticodehydrogenase, M: malate, MCT 4: monocarboxylate transporter 4, MDH: malate dehydrogenase,
ME: malic enzyme, NAD+: nicotinamide adenine dinucleotide, NADPH, H+: nicotinamide adenine dinucleotide phosphate, OAA: oxaloacetate, P: pyruvate, PDH: pyruvate dehydrogenase,
PEP: phosphoenolpyruvate, PG: phosphoglycerate, PKM2: pyruvate kinase isoform M2, PPP: pentose phosphate pathway, R5P: ribose 5-phosphate, TCA: tricarboxylic acids cycle.
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feeding the TCA cycle of these cells, producing 18 ATP per lactate and
sparing glucose for most anoxic cells [59,155,166–168]. This coopera-
tion between hypoxic and normoxic tumor cells optimizes ATP produc-
tion (as a result a molecule of glucose leads to 38 ATP) and allows cells
to adapt efficiently to their environmental oxygen conditions [166–170]
(Fig. 2). This “metabolic symbiosis” sustains tumor growth [76] and
contributes to chemotherapy and radiotherapy resistance [32,38].
Cancer cells also reject several other end products, such as NH4+, NO,
glycocyamine, etc., which are likely to promote proliferation and/or
re-expression of fetal genes [21]. NH4+ derived from glutaminolysis
appears as a diffusible autophagy regulator, mediating resistance to
chemotherapy and oxidative stress in nutrient-poor regions of solid
tumors [171].

5. Main anabolic pathways

Biosyntheses are necessarily enhanced by cancer cells to build
new tumor substance. To save the ATP required by essential de novo
synthesis, it is likely that cells promote salvage pathways, sparing
ATP, and directly incorporate several molecules or macromolecules
found in their environment [172]. Metabolic coupling occurs between
cancer cells and environmental cells such as adipocytes [112] or
autophagic stroma cells[97,173,174] that may serve as “food donors.”

5.1. Lipid synthesis

Cancer cells are highly dependent on their de novo lipid synthesis
[175], which is promoted by the PI3K/AKT/mTOR pathway [176], and
reflected by increased expression of lipogenic enzymes, such as fatty
acid synthase (FAS) [177–180]. Acetyl-CoA derived from citrate is
converted into malonyl-CoA under the action of acetyl-CoA carboxylase
(ACC), a key regulator enzyme activated by citrate [87]. FAS then cataly-
ses the NADPH-dependent condensation of acetyl-CoA and malonyl-
CoA in fatty acids, consuming great quantities of ATP and NADPH,H+

[87,110,111]. Of note, acetyl-CoA feeds the acetylation of histone [181],
favoring gene expression [2,21,22]. Enhanced CS activity promotes the
lipid route rather than mitochondrial ketone body synthesis [182]. It is
likely that the ketogenic route and histone acetylation are favored in



Fig. 2. A model of the symbiotic cooperation between normoxic and hypoxic cancer cells. In normoxia conditions, TCA functioning is coupled with OXPHOS for ATP and CO2 production.
Because cells produce great amounts of ATP, they proliferate at a higher rate. Inactive PKM2 favors the utilization of glucose towards biosynthesis pathways (ribose, serine, glycerol, etc.).
Rejected CO2 contributes towards the acidification of the environment, promoting invasiveness and dissemination. In the case of severe hypoxia or anoxia, OXPHOS-ATP production is
arrested, and glycolysis becomes the unique source of ATP, which is used by cells to survive. Glucose is metabolized into pyruvate by active PKM2 dimeric form, the reaction producing
ATP. In this condition, Ala and Gln sustain transaminases cascades (TransA), resulting in pyruvate feeding the LDH-5 reaction, and in aspartate, which is rejected as a waste product,
since nucleotide synthesis is arrested due to lack of energy. For the functioningof glycolysis‐producingpyruvate, NAD+ is crucial and this cofactor is regenerated by LDH-5. Lactate is rejected
byMCT4 transporter and acidifies the environment. Lactatemay enter normoxic cells byMCT1 and couldbe used as an important fuel, feeding theTCA cycle after pyruvate transformation by
LDH-1 (one lactate results in 18 ATP). In moderate hypoxia, cells proliferate at an intermediate rate, because the production of ATP by TCA-OXPHOS is reduced. Glycolysis is enhanced, the
switchbetween the active and inactive form of PKM2, orienting glucose towards biosynthesis or towards ATP andpyruvate production. Ala andGln sustain transaminases cascades (TransA),
resulting in pyruvate and aspartate production, sustaining the LDH reaction and nucleotide synthesis respectively. Because of PDH slowdown or inactivation, citrate may come from Glu
through a reversed IDH route, rather thanOAA and acetyl-CoA condensation. The senses offluxes depend on quantities of O2 concentration and substrates. This cooperation between hypoxic
and normoxic cancer cells optimizes ATP production, since onemolecule of glucose results finally in 38 ATP (2 through glycolysis in severe hypoxic cells, and 36 through by TCA functioning
in normoxic cells). ACLY: ATP citrate lyase, Ala: alanine, Asp: aspartate, G: glucose, GADPH: glyceraldehyde 3-phosphate dehydrogenase, GDH: glutamate dehydrogenase, Gln: glutamine,
GLUT: glucose transporter, GPD: glycerol 3-phosphate dehydrogenase, GS: glutamine synthetase, G6PDH: glucose 6-phosphate dehydrogenase, G6P: glucose 6-phosphate, G3P: glycerol
3-phosphate, HAT: histone acetyl transferase, HIF: hypoxia inducible factor, IDH: isocitrate dehydrogenase, α-KG: α-ketoglutarate, LDH: lacticodehydrogenase, M: malate, MCT:
monocarboxylate transporter, NAD+: nicotinamide adenine dinucleotide, OAA: oxaloacetate, OXPHOS oxidative phosphorylation, P: pyruvate, PDH: pyruvate dehydrogenase, PKM2:
embryonic isoform of pyruvate kinase, R5P: ribose 5-phosphate, TCA: tricarboxylic acid cycle, TransA: transaminases.
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concert, since the ketone product β-hydroxybutyrate contributes to his-
tone acetylation by inhibiting histone deacetylases [183]. Glycerol
3-phosphate (G3P) is crucial for triglyceride biosynthesis and is derived
fromDHAPbyglycerol 3-phosphate dehydrogenase (GPDH). The glycerol
phosphate shuttle, which transfers energetic electrons to complex II via
FADH,H+, could become themain cause of OXPHOS and ROS stimulation
when the malate/aspartate shuttle is unprimed.

5.2. Nucleotide synthesis

ATP initiates de novo purine synthesis by stimulating the reaction
forming 5-phosphoribosyl-1-pyrophosphate (PRPP) from R5P, whereas
aspartate feeds the aspartate transcarbamylase reaction opening pyrim-
idine synthesis with carbamyl-phosphate derived from glutamine by
carbamyl-phosphate synthase. Although PRPP is an allosteric activator
of the latter enzyme, it enters the last part of pyrimidine synthesis.
Nucleotide synthesis consumes great quantities of R5P produced by
the oxidative and/or non-oxidative branches of the PPP (as seen
above); aspartate derived from the transamination of OAA or from
L-asparagine derived from diet and proteolysis by asparaginase, which
is targeted in leukemia treatment [184]; glycine derived from serine fa-
vored by 3-PG accumulation above the PKM2 bottleneck; and glutamine
derived essentially from proteolysis, except under glutamine depletion
where it can be synthesized fromGlu byGS [185]. Thymidine synthesis,
which requires NADPH,H+ for dihydrofolate reductase functioning,
is coupled with the folate cycle which uses NADPH,H+ and serine
[186]. Ribonucleosides are transformed into desoxyribonucleosides
by thioredoxine, also consuming NADPH,H+.

image of Fig.�2
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6. The reprogramming metabolism favors cancer cell growth

6.1. NO production, polyamine synthesis, and S-adenosylmethionine
depletion

Arginosuccinate synthase (ASS) converts aspartate and citrulline
into arginosuccinate, which is then transformed into fumarate and
arginine. ASS1 is often inactivated in various types of cancer cells
[187,188]. This inactivation has multiple consequences that favor can-
cer development, such as NO production, polyamine synthesis and
S-adenosylmethionine (SAM) depletion. This blockage leads to aspar-
tate accumulation and engages this molecule towards pyrimidine
synthesis, whereas it induces cell dependence on extracellular argi-
nine. This semi-essential amino acid is required in abundance by
tumors and is diverted towards NO production through NO synthase
or converted into ornithine via arginase1, this crossroad being
regulated by the HIF1α/HIF2α ratio [39]. NO inhibits aconitase
[128], favoring the ACLY route, and promotes several pathways that
favor proliferation such as gene expression (HIF, PKM2) [21,189] and
increased intracellular cGMP sustaining mitosis, the decreased cAMP/
cGMP ratio stimulating glycolysis via PFK1 [190,191]. In contrast, orni-
thine feeds the polyamine pathway that is coupled with the production
of 5methylthioadenosine, leading to the formation of adenine [108]. For
polyamine synthesis, ornithine is decarboxylated in putrescine by
ornithine decarboxylase (ODC), and putrescine sustains spermine and
spermidine polyamine formation via S-adenosine decarboxylase (SAM
decarboxylase), a 5 methylthioadenosine-producing reaction [135]. As
a result, arginine via this route sustains purine nucleotide synthesis,
sparing ATP molecules. Thus, arginine deprivation diet and arginine
depleting enzymes such as pegylated arginine deiminase may affect
cancer cell growth [187]. Increased polyamine availability also enhances
the capability of cancer cells to invade and metastasize to new tissues
while diminishing the anti-tumor immune functions of immune cells
[192]. Because polyamine synthesis is coupled with SAM decarboxylase,
this process decreases the intracellular SAM pool [108]. SAM deficiency
promotes carcinogenesis by DNA hypomethylation [193], resistance to
apoptosis [194] and impairment of GSHdetoxification, since SAM is a pre-
cursor of GSH [195].

6.2. Resistance to apoptosis

Glycolyticmetabolismprotects cancer cells fromapoptosis [196,197].
Various links between resistance to apoptosis and glycolysis have
been put forward: AKT has been found to promote growth factor-
independent survival, to regulate multiple steps of glycolysis such as
the glucose transporter 1 (GLUT1) and hexokinase 1 (HK1), and to
prevent activation of Bax, which triggers apoptosis [198]. HK2 is
overexpressed in cancer cells and linked to the outer membrane with
the voltage-dependant anion channel (VDAC). It competes with Bcl-2
proteins for binding to VDAC and influences the balance of the pro-
and anti-apoptotic proteins that control outer membrane perme-
abilization [61,199,200]. Overexpression of GAPDH promotes survival
of cancer cells even when they have undergone mitochondrial perme-
abilization, an apoptosis-initiating process [201–203]. Glycolysis is
also linked to the two anti-apoptotic proteins Mcl-1 and Bcl-xL
[45,204,205]. Mcl-1 expression is under GSK-3 control [206], and en-
forcement of glycolysis stabilizes Mcl-1 expression [46,126,207,208].
Bcl-xL regulates mitochondrial respiration and metabolism and seems
to block apoptosis by reducing citrate-derived acetyl-CoA production
[209,210]. This decrease prevents the N-acetylation processwhich is re-
quired to activate multiple proteins including caspases [211]. Addition
of citrate restores protein N-alpha-acetylation in Bcl-xL expressing
cells and sensitivity to apoptotic stimuli [212]. Glycolysis could also
be associated with inactivation of several pro-apoptotic BH3-only
proteins: inactivation of Bad may be critical for suppressing apoptosis
and maintaining glycolysis. Bad is inactivated by phosphorylation
which is JNK1-mediated and is required for maintaining normal glycol-
ysis for cell survival via the activation of PFK-1 [213]. Noxa phosphory-
lation is Cdk5-mediated and promotes glucose uptake and directs
glucose flux towards PPP [214]. Noxa also favors activation of the
pro-apoptotic protein Bax whereas it neutralizes the anti-apoptotic
Mcl-1. Under glucose deprivation, Cdk5 kinase activity is diminished.
Consequently, unphosphorylated Noxa exerts a pro-apoptotic role [215],
which involves Mcl-1 degradation and the concerted action of Bim
[216]. Two other BH3-only proteins, Bim and PUMA, are downregulated
by high glucosemetabolism [197,217]. Bim is induced by ER stress, a con-
sequence of glucose deprivation which promotes the accumulation of
unfolding proteins [197].

6.3. The imbalance between oncogenes and suppressors redirects metab-
olism to support proliferation

The role of the signaling pathways that conduct the reprogramming
metabolism has been extensively reported in recent years, in particular
the role of HIF [39,40,218]. In brief, activated mitogenic pathways
(PI3K/AKT/mTOR pathway, HIF-1α, c-Myc, etc.) are increased due to
genetic mutations and stimulate proliferation [2–4,6,103,119,219] in
association with the loss of anti-proliferative pathways (P53, P21,
PTEN, LKB, AMPK). For example, AKT stimulates glucose uptake, glycol-
ysis, PPP and fatty acid synthesis [220], whereas c-Myc promotes gluta-
mine metabolism as well as purine and pyrimidine biosynthesis [221].
This reorientation of signaling pathways drives expression and/or acti-
vation of various enzymes which participate in the specific metabolism
of cancer cells, promoting survival and proliferation.

In conclusion, cancer cells adopt a metabolism in a way that favors
their development, whilst driving and adapting to their microenviron-
ment in a manner that also promotes their development. Although
many questions remain to be elucidated, understanding the biochemical
pathways potentially involved helps us to develop new strategies for
counteracting cancer proliferation. To induce cancer cell death, at least
experimentally, it would be interesting to explore and/or combine
different strategies: to inhibit regulator enzymes, notably those that
open biochemical pathways, although to expect a significant effect,
it would probably be necessary to block at least two pathways; to
reduce ATP, NAD+ and NADPH,H+ production, particularly in hypoxic
chemoresistant cells, by targeting the reactions implied in their produc-
tion, such as PGK1, LDH or ME; to interfere with metabolites located at
the crossroads of essential pathways, such as PEP, pyruvate,α-KG, aspar-
tate, by using competitive inhibitors such as 3-bromopyruvate [208,222];
to block metabolite transporters such as MCT [166]; and to increase the
level of citrate inside cells by inhibiting ACLY (a combination of alpha
lipoic acid and calciumhydroxycitrate is efficient inmouse cancermodels
[223]) in an aim to reactivate the Pasteur effect, to block PFK and arrest
glycolysis [126,127]. Finally, anti-metabolic strategies could be associated
with current chemotherapies to improve their efficiency and to sap the
mechanisms of chemoresistance.
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