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The ribosomal protein S6K (S6 kinase) represents an extensively
studied effector of the TORC1 [TOR (target of rapamycin)
complex 1], which possesses important yet incompletely defined
roles in cellular and organismal physiology. TORC1 functions
as an environmental sensor by integrating signals derived from
diverse environmental cues to promote anabolic and inhibit
catabolic cellular functions. mTORC1 (mammalian TORC1)
phosphorylates and activates S6K1 and S6K2, whose first
identified substrate was rpS6 (ribosomal protein S6), a component
of the 40S ribosome. Studies over the past decade have uncovered
a number of additional S6K1 substrates, revealing multiple levels
at which the mTORC1–S6K1 axis regulates cell physiology.
The results thus far indicate that the mTORC1–S6K1 axis
controls fundamental cellular processes, including transcription,
translation, protein and lipid synthesis, cell growth/size and cell
metabolism. In the present review we summarize the regulation of

S6Ks, their cellular substrates and functions, and their integration
within rapidly expanding mTOR (mammalian TOR) signalling
networks. Although our understanding of the role of mTORC1–
S6K1 signalling in physiology remains in its infancy, evidence
indicates that this signalling axis controls, at least in part, glucose
homoeostasis, insulin sensitivity, adipocyte metabolism, body
mass and energy balance, tissue and organ size, learning, memory
and aging. As dysregulation of this signalling axis contributes to
diverse disease states, improved understanding of S6K regulation
and function within mTOR signalling networks may enable the
development of novel therapeutics.

Key words: mammalian target of rapamycin complex 1
(mTORC1), mammalian target of rapamycin complex 2
(mTORC2), S6 kinase 1 (S6K1), S6 kinase 2 (S6K2), target of
rapamycin (TOR).

INTRODUCTION

Organismal homoeostasis requires that cells, tissues and organs
respond appropriately to diverse environmental cues, which
operate via tightly controlled signal transduction networks.
Indeed, the dysregulation of many signalling pathways underlies
numerous human pathological disease states. The protein kinase
TOR (target of rapamycin) functions as an evolutionarily
conserved environmental sensor. In unicellular eukaryotes, such
as yeasts, TOR responds primarily to nutrient levels. Evolution of
multicellular organisms provided TOR with the ability to respond
to a diverse array of environmental cues, such as hormones,
growth factors and mitogens, enabling this kinase to orchestrate
a myriad of cellular functions. From yeasts to mammals, TOR

forms at least two multi-protein complexes known as TORC1
(TOR complex 1) and TORC2 [1–3]. These complexes exhibit
distinct subunit composition, regulation, substrate selectivity and
sensitivity to the drug inhibitor rapamycin, clinically known as
sirolimus. TORC1, which displays sensitivity to acute rapamycin,
promotes a diverse array of anabolic processes and suppresses
catabolic processes such as autophagy. The significantly less-
well understood TORC2, which displays insensitivity to acute
rapamycin, is thought to promote cell proliferation and cell
survival. Today, rapamycin or its analogues (rapalogues) are FDA
(Food and Drug Administration)-approved in clinical medicine
as immunosuppressive agents to blunt organ transplant rejection,
in cardiology to reduce restenosis following angioplasty, and in
oncology to treat renal cell carcinoma, thus underscoring the
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important role of mTORC1 (mammalian TORC1) in physiology
[4–7].

The ribosomal protein S6K (S6 kinase) and 4EBP [eIF4E
(eukaryotic initiation factor 4E)-binding protein] represent the
first TOR substrates identified in metazoans and remain the best
characterized [8,9]. Since then, only a small set of additional
bona fide TOR effectors have been identified. Today, we
understand that S6K activation absolutely requires TORC1-
mediated phosphorylation. S6K phosphorylates its own set of
diverse targets, many of which promote protein production [10]. In
a parallel pathway, TORC1-mediated phosphorylation of 4EBP1
initiates cap-dependent translation by eIF4E [10]. Thus TORC1
signals along parallel pathways to co-ordinately promote protein
synthesis. rpS6 (ribosomal protein S6), a component of the 40S
ribosome, represents the most extensively studied S6K substrate,
although the biochemical consequence of rpS6 phosphorylation
remains poorly understood [9,11].

In mammals, S6K represents a family composed of two
distinct genes, S6K1 (RPS6KB1; also known as S6Kα) and
S6K2 (RPS6KB2; also known as S6Kβ) [12–18]. Mice singly
null for S6K1 or S6K2 are born at normal Mendelian ratios,
whereas mice null for both S6K1 and S6K2 display perinatal
lethality [14,19]. Whole-body knockout of mTOR (mammalian
TOR) in mice causes early embryonic lethality [e5.5 (embryonic
day 5.5)] [20,21]. Taken together, these data reveal that non-S6K
substrates mediate essential roles for mTORC1 during embryonic
development, with S6Ks controlling physiological homoeostasis
post-development. Emerging evidence suggests that aberrant
mTORC1–S6K1 signalling contributes to various pathological
states, including diabetes, obesity, cancer, organ hypertrophy
and aging-related pathology [2,22]. However, a mechanistic
understanding of how S6K signalling contributes to many of these
pathophysiological settings remains limited.

In the present review, we summarize the regulation and function
of the TOR–S6K signalling axis in cellular and organismal
physiology. Owing to limited research on S6K2, we will focus
almost entirely on S6K1, although we will discuss S6K2
when appropriate. We will describe the complex biochemical
mechanisms that govern the activation state of S6K1 within cells
and describe how S6K1 integrates within cellular TOR signalling
networks. We will review our understanding of the function of the
TORC1–S6K1 axis in cellular function as well as physiology. To
open, we provide an historical timeline of events that united TOR
and S6K1.

HISTORICAL PERSPECTIVE

TOR and S6K share an inextricable biochemical link, yet possess
unique histories that merged upon the discovery of the drug
rapamycin, a naturally produced macrolide antibiotic. Rapamycin
was discovered nearly a half-century ago in soil samples
containing the bacterium Streptomyces hygroscopicus found on
Easter Island, a South Pacific Polynesian island owned today by
Chile and known as Rapa Nui to the native population [23]. This
island, famous for its mysterious giant stone statues called ‘Moai’
that dot the coastline, was inhabited by an ancient civilization
that precipitously failed prior to the arrival of the first Europeans,
possibly due to mismanagement of vital natural resources within
a fragile island ecosystem (i.e. deforestation) [24]. The first
studies on rapamycin revealed the compound to possess anti-
fungal activity due to G1-phase arrest [6,25]. During the research
of the efficacy of treating fungal infections with rapamycin, the
compound was found to potently suppress the immune response
in rats [26]. Discovery of the immunosuppressive properties of

rapamycin was pivotal both in its development as a clinical
therapeutic, but also for basic biomedical research aimed at
understanding mitogen-driven cellular growth and proliferation.

In mammals, rapamycin blocks the G1- to S-phase transition
in T-lymphocytes and thus inhibits T-cell proliferation by
inhibiting signalling via interleukin-2 and its receptor [25].
As rapamycin generally reduces the proliferation of other cell
types, to various degrees, rapalogues continue to be tested
as anti-cancer chemotherapy drugs [6,7]. To identify genetic
components that control rapamycin-induced toxicity in yeast, an
elegant genetic screen was performed in 1991 in Saccharomyces
cerevisiae [27]. Mutations in three genes, Fpr1 [an orthologue
of FKBP12 (FK506-binding protein 12)], Tor1 and Tor2,
conferred rapamycin resistance. Today, we understand that
rapamycin bound to FKBP12 binds the TOR FRB (FKBP12–
rapamycin-binding) domain, a short sequence lying immediately
upstream of the C-terminal kinase domain (see Figure 1A). Thus
rapamycin functions as an allosteric inhibitor rather than as
an ATP-competitive catalytic inhibitor [6]. Soon thereafter in
1994–1995, several groups identified a mammalian counterpart
to budding yeast Tor1/2 by immuno-affinity purification of
FKBP12–rapamycin-interacting proteins, known today as mTOR
(mammalian or mechanistic target of rapamycin) [1]. In an
interesting evolutionary twist, higher eukaryotes (i.e. worms, flies
and mammals) possess only one TOR gene, whereas the budding
yeast S. cerevisiae and the fission yeast Saccharomyces pombe
possess two Tor genes (Tor1 and Tor2).

Although we know today that TOR, as part of TORC1,
phosphorylates and activates the S6Ks in a manner potently
sensitive to rapamycin, S6K1 was identified independently of
either rapamycin or TOR. In the 1970s, it was discovered that
diverse growth factors and mitogens promote phosphorylation
of 40S rpS6, a component of the small ribosomal subunit,
sparking intensive research efforts aimed at understanding this
phenomenon. The 90 kDa RSK (ribosomal S6K) represents the
first identified rpS6 kinase [28], now known to represent a
family of three genes, RSK1–RSK3 [29]. The second rpS6
kinase, identified shortly thereafter, was the 70 kDa RSK (now
called p70-S6K1) [12,13]. Thus two distinct but related kinases,
both members of the AGC [PKA (cAMP-dependent protein
kinase)/PKG (cGMP-dependent protein kinase)/PKC (protein
kinase C)] kinase family, were found to phosphorylate rpS6 in
vitro and, unfortunately, both were given similar names due to
similar substrate preference, engendering significant confusion in
the literature over the years. It is important to note that, although
S6K1 was believed for many years to represent the physiological
kinase for rpS6 in intact cells, persistent phosphorylation of rpS6
upon genetic knockout of S6K1 and S6K2 in mice ultimately
revealed that RSK also represents a bona fide rpS6 kinase [19].

Since rapamycin was known to inhibit proliferation, the drug
became an interesting candidate probe for the rpS6 pathway.
Indeed, in 1992 rapamycin was found to potently inhibit mitogen-
induced activation of S6K1 and the phosphorylation of rpS6 [30–
32]. The rapamycin–FKBP12 complex, however, did not appear
to directly interact with S6K1. Thus how rapamycin controlled
S6K1 activity remained unclear. In 1995, rapamycin was found
to ablate phosphorylation of S6K1 on Thr389 [33]. Consistent
with a link between rapamycin and protein synthesis, in 1996
rapamycin was found to inhibit the phosphorylation of 4EBP1,
an event that suppresses cap-dependent translation initiated by
eIF4E [34]. A direct connection between S6K and mTOR was
not demonstrated until 1997–1998 when mTOR was shown to
directly phosphorylate S6K1 (Thr389) and 4EBP1 (Thr37/Thr46) by
in vitro kinase assay and other in vivo approaches [35,36]. In 1999,
mTOR-mediated phosphorylation of S6K1 (Thr389) in vitro was
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Figure 1 Domain structures of S6K and mTOR

(A) mTOR domain structure and phosphorylation sites: mTOR contains a tandem series of HEAT (huntingtin, elongation factor 3, the PR65/A subunit of protein phosphatase 2A and TOR) repeats
thought to mediate protein–protein interactions. Evolutionarily conserved FAT [FRAP (FKBP–rapamycin-associated protein)/ATM (ataxia telangiectasia mutated)/TRRAP (transformation/transcription
domain-associated protein)] and FATC (FATC-terminal) domains flank the kinase domain. The rapamycin (Rapa)–FKBP12 complex binds the FRB domain. Upon activation, mTOR autophosphorylates
on Ser2481. Upon activation by mTORC1, S6K1 phosphorylates mTOR Ser2448 via a feedback loop. mTOR Ser1261, Ser2159 and Thr2164 phosphorylation promotes mTORC1 signalling. (B) S6K
isoforms, domain structure and phosphorylation sites: S6K1 isoforms include p70-, p85- and p31-S6K1; alternative start site usage lengthens the p85- and p31-S6K1 N-termini by 23 amino acids
(note that p31-S6K1 lacks most of the kinase domain). S6K2 isoforms include p54- and p56-S6K2; alternative start site usage lengthens the p56-S6K2 N-terminus by 13 amino acids. NLSs lie
within the N-terminal extensions of p85-S6K1 and p56-S6K2, whereas S6K2 additionally contains an NLS within the C-terminus as well as a proline-rich domain (Pro). S6Ks contain an acidic
N-terminal domain (NTD), kinase domain (KD), linker region and acidic C-terminal domain (CTD). The N-terminal domain contains the TOS motif, whereas the CTD contains the autoinhibitory
pseudosubstrate domain and RSPRR motif. mTORC1 phosphorylates the HM site (Thr389) in the linker region and PDK1 phosphorylates the T-loop site (Thr229) within the kinase domain. Other
regulatory phosphorylation (P) sites, including the TM site (Ser371), are shown.

found to increase S6K1 activity towards rpS6 [37]. Throughout
the 1990s, several other phosphorylation sites on S6K1 were
identified that contributed to S6K1 regulation (described in more
detail below). Thus S6K1 regulation occurs via complex multi-
site phosphorylation. In 1998, it was shown that full activation
of S6K1 requires not only phosphorylation of Thr389 by mTOR,
but also phosphorylation of Thr229 by PDK1 (phosphoinositide-
dependent kinase 1) [38,39]. The discovery of distinct TOR-
containing complexes in 2002 in S. cerevisiae and mammals,
a rapamycin-sensitive raptor (regulatory associated protein of
mTOR)-containing TORC (TORC1) and a rapamycin-insensitive
rictor (rapamycin-insensitive companion of mTOR)-containing
TORC (TORC2), marked the next major turning point in the field
[40–42].

S6K DOMAIN STRUCTURE AND CELLULAR REGULATION

S6K1 and S6K2 belong to the AGC kinase family, named
for its three founding members PKA, PKG and PKC [43,44].
Although S6K1 was cloned in 1990 [12,13], S6K2 was not
cloned until almost a decade later [14–18]. AGC kinases
share several structural features that confer similar modes of

regulation. Their kinase domains exhibit a bilobal fold structure
in which a small N-terminal lobe and a larger C-terminal
lobe co-ordinate ATP binding [43,44]. At the beginning of the
C-lobe lies an activation segment or loop (commonly known
as the T-loop), phosphorylation of which effects conformational
changes important for phosphoryl transfer. PDK1 represents the
T-loop kinase for many AGC kinases, including S6K, RSK
and Akt [also known as PKB (protein kinase B)]. Substrates
engage a groove located near the T-loop. Two other important
phosphorylation sites, the TM (turn motif) (so-named due to its
location at the cusp of a structural turn in the PKA tail) and HM
(hydrophobic motif) sequentially follow the kinase domain. The
phosphorylated HM site engages a hydrophobic pocket within
the N-lobe. The phosphorylated TM site stabilizes phospho-HM
binding to the N-lobe hydrophobic pocket. Together, these three
critical phosphorylation events stabilize a catalytically competent
conformation [43,44].

S6K domain structure

The S6K1 and S6K2 genes each encode two protein isoforms
generated by alternate ATG start site utilization [45]. S6K1 and
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S6K2 share 84 % identity within their kinase domains, with
less homology in their N- and C-terminal regions (43% and
59% identity respectively) [15]. The more extensively studied
70 kDa S6K1 isoform (also known as S6Kα2) contains 502 amino
acids, whereas the larger 85 kDa isoform (also known as S6Kα1)
contains an additional 23 N-terminal amino acids (Figure 1B).
Although p70-S6K1 predominantly localizes to the cytosol, the
presence of an NLS (nuclear localization sequence) within the N-
terminal extension of p85-S6K1 suggests that this isoform shuttles
to the nucleus, although this notion has little experimental support.
The 54 kDa S6K2 isoform (p54-S6K2; also known as S6Kβ2)
contains 482 amino acids, whereas the larger 56 kDa isoform
(also known as S6Kβ1) contains an additional 13 N-terminal
amino acids (Figure 1B). Although the larger isoforms of S6K1
and S6K2 each contain an NLS in their N-terminal extensions,
S6K2 uniquely contains an NLS in the C-terminus, suggesting
that both S6K2 isoforms shuttle to the nucleus. A smaller splice
variant of S6K1 has been reported, p31-S6K1, that is required for
cellular transformation induced by the splicing factor SF2/ASF
(splicing factor 2/alternative splicing factor) [46]. This 31 kDa
isoform lacks most of the kinase domain, however, suggesting a
function independent of kinase activity. Lastly, evidence exists
for a 60 kDa splice isoform of S6K1, particularly in breast cancer
cell lines [47].

The S6K1 and S6K2 proteins can be subdivided into
several important regulatory domains (see Figure 1B): an acidic
N-terminus that contains the TOS (TOR signalling) motif; the
kinase domain that contains the T-loop; a linker region that
contains the TM and HM sites; and a basic C-terminus containing
an autoinhibitory pseudosubstrate domain. This C-terminal
domain is unique to S6Ks among other AGC family members
and experiences phosphorylation on multiple sites. In S6K2, a
proline-rich region follows the pseudosubstrate domain, which
may facilitate interaction with SH3 (Src homology 3)- and/or
WW-domain-containing proteins. Co-ordination between these
modular domains via hierarchical multi-site phosphorylation
underlies the regulation of S6Ks.

S6K regulation by complex multi-site phosphorylation

Diverse growth factors and mitogens [i.e. serum, insulin/IGF
(insulin-like growth factor), epidermal growth factor and
PKC-promoting phorbol esters] activate the S6Ks [8,9]. The
insulin/IGF pathway, the best-studied activator of S6Ks, signals
via PI3K (phosphoinositide 3-kinase)/Akt to activate mTORC1
and thus the S6Ks [1,2]. In a PI3K-independent manner, the
Ras/MAPK (mitogen-activated protein kinase) pathway also
activates mTORC1. Both pathways, however, co-operate with
other inputs to maximally activate the S6Ks. For example,
downstream of PI3K, the Rho family G-proteins Cdc42 and Rac
and the atypical PKC isoforms PKCζ and PKCλ contribute to
S6K1 activation [48,49]. In response to serum or insulin, S6K1
undergoes phosphorylation on at least eight well-mapped sites
[8]. S6K1 activity absolutely requires phosphorylation on three
critical sites: the T-loop site on the activation loop (Thr229 in p70-
S6K1; Thr252 in p85-S6K1), the TM site in the linker domain
(Ser371 in p70-S6K1; Thr394 in p85-S6K1), and the HM site, also
in the linker domain (Thr389 in p70-S6K1; Thr412 in p85-S6K1),
as mutagenic alanine residue substitutions at each of these sites
abolishes S6K1 activity [50,51]. Owing to the essential nature
of Thr389 phosphorylation, the mTORC1 inhibitor rapamycin
potently blocks S6K1 activation by all known agonists [30–32],
which correlates with dephosphorylation of the HM site, T-loop
site and Ser404 in the linker region [33,52].

Over the past 20 years, a progressive series of S6K1 structure–
function studies have elucidated the molecular steps that govern
S6K1 activation by mitogens, revealing roles for complex
interactions between specific domains and phosphorylation sites.
This research has led to models for stepwise activation of
S6K1 via complex multi-site phosphorylation [38,50,53–55].
In these models, S6K1 phosphorylation on multiple C-terminal
sites represents an early event that facilitates mTORC1-mediated
phosphorylation of the HM site (Thr389) in the linker domain
and PDK1-mediated phosphorylation of the T-loop site (Thr229)
on the activation loop. Owing to the strong positive co-
operativity between the HM and T-loop sites, it has been difficult
to determine unequivocally the temporal order of Thr389 and
Thr229 phosphorylation events relative to each other. The current
data support two models for activation of S6K via ordered
phosphorylation, a conventional widely accepted model (Model
1; Figure 2A), and an alternate model (Model 2; Figure 2B).
The temporal occurrence of TM site phosphorylation remains
poorly understood, primarily because this phosphorylation event
has received relatively scant attention by researchers. A recent
study, however, suggests that TM site phosphorylation on Ser371

by a constitutive kinase represents one of the first known
phosphorylation events, one that may occur co-translationally
[55] in a manner similar to the phosphorylation of the Akt TM site
Thr450 [56]. Below, we first review the data that led to models for
the activation of S6K1 by complex multi-site phosphorylation;
secondly, we present two models for the temporal ordering of
these phosphorylation events.

C-terminal phosphorylation

An early step in S6K1 activation in response to growth
factors and mitogens involves priming phosphorylation on four
proline-directed sites that lie in the C-terminal autoinhibitory
pseudosubstrate domain (Ser411, Ser418, Ser421 and Ser424), which
bears significant homology to the phosphorylated region of
rpS6 [53,54]. It was first proposed in the early 1990s that, in
the inactive state, the basic C-terminal pseudosubstrate domain
interacts with the acidic N-terminus, which occludes the kinase
domain and results in an inactive conformation (see Figure 2)
[12,57]. Mitogen-induced C-terminal phosphorylation relieves
this inhibition by releasing pseudosubstrate domain binding, thus
inducing a conformational change that enables access to the HM
and T-loop sites [12,57]. Although phosphorylation of these four
C-terminal sites contributes to S6K1 activation, it is not critical.
Mutation of these four sites to alanine residues, or deletion of
101 amino acids from the C-terminus (�CT), modestly reduces
S6K1 activation, whereas substitution with phospho-mimetic
residues (D3E) modestly increases basal activity in some reports
[52,58,59]. Although the proline-directed mitogen-regulated
MAPKs phosphorylate these C-terminal sites in vitro [53], the
physiological kinases for these sites in intact cells remain unclear.

HM site phosphorylation by mTORC1

In 1998–1999, mTORC1 was shown to directly phosphorylate
S6K1 on the HM site Thr389 to promote S6K1 activity (see
Figure 2) [36,37]. Mutation of Thr389 to alanine (T389A) abolishes
S6K1 activity, whereas substitution of an acidic glutamate residue
for Thr389 (T389E) to mimic phosphorylation augments basal
S6K1 activity in the absence of mitogens, thus rendering S6K1
partially constitutively active [50,59,60]. In 1995–1996, it was
found that deletion of 30 amino acids from the N-terminus
of p70-S6K1 (�NT) abolishes the serum-stimulated activation
of S6K1 and the phosphorylation of the rapamycin-sensitive
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Figure 2 Stepwise activation of S6K1 via multi-site phosphorylation

(A) Model 1: conventional model. The interaction of the C- and N-terminal domains results in autoinhibition of S6K1. Step 1: mitogens promote C-terminal domain (C) phosphorylation on multiple
sites to induce a more relaxed conformation. Step 2: the release of the autoinhibitory C-terminal domain (CTD) enables mTORC1 access to the HM and thus phosphorylation of Thr389. Step 3: the
release of the autoinhibitory CTD and phosphorylation on Thr389 enables PDK1-mediated phosphorylation of the T-loop on Thr229, resulting in full activation of S6K1. Phospho-Thr389 serves as
docking site for PDK1. Owing to insufficient data, the temporal order of TM site phosphorylation (Ser371) is not depicted. (B) Model 2: alternative model. Step 1: an unknown kinase phosphorylates
the inactive form of S6K on the TM site Ser371. Step 2: mitogens promote C-terminal domain (C) phosphorylation on multiple sites to induce a more relaxed conformation. Step 3: the release of the
autoinhibitory C-terminal domain enables PDK1 access to the T-loop. Step 4: PDK1-mediated phosphorylation of Thr229 promotes mTORC1-mediated phosphorylation on the HM site, Thr389. KD,
kinase domain; N, N-terminal domain. An animation of this Figure is available at http:www.BiochemJ.org/bj/441/0001/bj4410001add.html.

sites Thr389, Thr229 and Ser404 [61–63]. Strikingly, additional
deletion of the C-terminus (�NT/�CT) restores kinase activity
(although to levels significantly less than maximal, 5–15%) and
restores phosphorylation of the rapamycin-sensitive sites. These
results indicated that the N-terminus of S6K1 serves two critical
functions: first, it functions in the reception of an activating input
critical for Thr389 and Thr229 phosphorylation; and, secondly, it
suppresses an inhibitory function mediated by the C-terminus.
In 2002, a short sequence at the extreme N-terminus of p70-
S6K1 (FDIDL; amino acids 5–9) was identified to be critical
for mitogen-stimulated S6K1 activation and phosphorylation of
rapamycin-sensitive sites, and was named the TOS motif [59].
Deletion of the TOS motif or mutagenic inactivation of the motif
(F5A mutation within the FDIDL sequence) abolishes S6K1
kinase activity as well as Thr389 and Thr229 phosphorylation, thus
mapping the critical regulatory function of the N-terminus to a
specific motif. As in �NT/�CT, deletion of the C-terminus from
the F5A mutant (F5A-�CT) partially restored kinase activity
and Thr389 phosphorylation. 4EBP1, the other well-characterized
mTOR-regulated target, was also found to contain a TOS motif
(FEMDI; amino acids 114–118 at the extreme C-terminus) [59].
In 2003, several groups demonstrated that the S6K1 and 4EBP1
TOS motifs directly bind raptor, a critical mTOR-interacting
scaffold protein, thus enabling mTORC1 to engage substrates and
to mediate phosphorylation of rapamycin-sensitive sites [64,65].

The discovery that the S6K1 N-terminus also functions to
suppress an inhibitory C-terminal function was not elucidated
further until 2005, when a motif (RSPRR) was identified in the
C-terminus of p70-S6K1 (amino acids 410–414), shortly after
the linker region (see Figure 2) [66]. Mutation of the RSPRR motif
within the dead �NT or TOS motif-mutant (F5A) backbone
(�NT-R3A or F5A-R3A) rescued insulin-stimulated Thr389

phosphorylation and S6K1 activation. Thus, in a mutant lacking
an intact TOS motif (i.e. �NT or F5A), an intact RSPRR motif
suppresses mTOR-mediated Thr389 phosphorylation, and thus
inactivation of the RSPRR motif rescues activity. The mechanism
by which the S6K1 TOS motif suppresses the inhibitory RSPRR
motif remains a mystery, although one hypothesis posits that the
RSPRR motif functions as a docking site for a negative regulator,
such as a phosphatase, that is suppressed by mTORC1 [66].
Indeed, weak evidence suggests the involvement of a phosphatase
in the regulation of mTORC1 substrates (described in more detail
below).

T-loop site phosphorylation by PDK1

Maximal S6K1 activation in response to growth factors requires
the co-ordinate phosphorylation of both Thr229 and Thr389

[38,39,50]. Using in vitro and in vivo approaches, in 1998 the
constitutive kinase PDK1 was shown to directly phosphorylate
S6K1 on the T-loop site Thr229 to promote S6K1 activity [38,39],
similar to the earlier identified role of PDK1 in phosphorylation of
the Akt T-loop site Thr308 [67]. As S6K1 is enzymatically dead in
PDK1− / − embryonic stem cells or when mutated to T229A, S6K1
activation absolutely requires T-loop phosphorylation [50,68].
In vitro phosphorylation of S6K1 by PDK1 was found to
activate S6K1-�CT significantly better than full-length S6K1,
but to poorly activate an S6K1 mutant bearing alanine residue
substitutions at C-terminal phosphorylation sites [38]. These
results suggested that an intact unphosphorylated C-terminus
blocks access of PDK1 to the activation loop. Moreover, PDK1
poorly activated S6K1 T389A-�CT or T371A-�CT in vitro,
revealing required roles for the HM and TM sites in PDK1-
mediated S6K1 activation [38].
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S6K1 T-loop phosphorylation (Thr229) relies upon the PIF
(PDK-interacting fragment)-binding pocket found within the
PDK1 kinase domain, but does not depend on the PDK1 PH
(pleckstrin homology) domain [69]. Conversely, Akt T-loop
phosphorylation (Thr308) does not require the PIF-binding pocket
of PDK1, yet is highly dependent on the PDK1 PH domain
[70]. Clearly, a distinction exists among PDK1 substrates in
that PtdIns(3,4,5)P3-dependent activation at the membrane (e.g.
Akt) relies upon PH domain function, whereas PtdIns(3,4,5)P3-
independent activation in the cytosol (e.g. S6K1) relies upon the
PIF-binding pocket for PDK1 interaction. The observation that
Thr229 phosphorylation on S6K1 occurs in a PI3K-dependent
manner (sensitive to wortmannin) in response to insulin [71]
probably reflects co-operativity between Thr229 phosphorylation
and Thr389 phosphorylation, as Thr389 phosphorylation occurs in a
PtdIns(3,4,5)P3-dependent manner via Akt/mTORC1. A recent
crystal structure has confirmed that S6K1 bearing a PDK1-
phosphorylated T-loop relative to an unphosphorylated T-loop
induces local ordering of this normally disordered segment [72].

TM site phosphorylation

Although S6K1 activation absolutely requires TM site
phosphorylation on Ser371 (S6K1-S371A is enzymatically dead),
the regulation and function of this phosphorylation event, as
well as the identity of the Ser371 kinase, remains unclear
[51]. In some reports, serum or insulin stimulation modestly
increases Ser371 phosphorylation (∼2-fold) in a rapamycin- and
wortmannin-sensitive manner [59,71]. S6K1 in growth-factor-
deprived cells, however, bears significant Ser371 phosphorylation
that is rapamycin-resistant. As kinase-dead S6K1 displays normal
Ser371 phosphorylation, this site does not represent a site of
autophosphorylation [51]. As addition of a T389E substitution
fails to restore any kinase activity to the dead S371A mutant,
these data suggest that Ser371 phosphorylation plays an important
yet independent role in regulating the intrinsic catalytic activity
of S6K1 [51]. Lastly, mTOR reportedly phosphorylates Ser371 in
vitro, and overexpression of TOR in intact cells modestly increases
Ser371 phosphorylation, whereas overexpression of a kinase-dead
mTOR allele modestly reduces Ser371 phosphorylation [71]. These
results suggest that mTOR contributes to the regulation of S6K1
Ser371 phosphorylation. As phospho-Ser371 does not correlate
well with mTORC1 activity, another kinase may co-operate
with mTOR to regulate Ser371 phosphorylation. By analogy
to Akt in which TM site phosphorylation (Thr450) occurs co-
translationally and thus represents an early phosphorylation event
[56], it is temping to speculate that S6K1 TM site phosphorylation
also represents an early event that occurs co-translationally
prior to T-loop and HM site phosphorylation. Indeed, a recent
report supports such an idea, as Ser371 phosphorylation occurs
simultaneously with the production of S6K1 protein from a
transfected plasmid [55].

Models: stepwise activation of S6K1 via ordered multi-site phosphorylation

Investigation of Thr229 and Thr389 phosphorylation not only
revealed strong positive co-operativity between these sites for
S6K1 activation, but also addressed their temporal relationship
to each other. The results support two models for the stepwise
activation of S6K1 via ordered multi-site phosphorylation
(Figure 2). The conventional Model 1 suggests that mTORC1-
mediated phosphorylation of Thr389 occurs prior to PDK1-
mediated phosphorylation of Thr229 (Figure 2A) [38,39,60].
In this model, based largely on analogy to PDK1-mediated
activation of RSK2, phospho-Thr389 becomes a docking site for

PDK1, which then phosphorylates Thr229 on the activation loop
[73]. The alternative Model 2 suggests that PDK1-mediated
phosphorylation of Thr229 occurs prior to mTORC1-mediated
phosphorylation of Thr389 (Figure 2B) [50,55].

In support of Model 1, an S6K1-T389A mutant exhibits
reduced growth-factor-stimulated Thr229 phosphorylation in intact
cells [50]. In vitro, PDK1 phosphorylates S6K1-T389E-D3E
significantly better than wild-type, T389E or D3E, revealing
important roles for the HM site and C-terminal phosphorylation
in PDK1-mediated S6K1 phosphorylation [39,60]. In support
of Model 2, an S6K1-T229A mutant exhibits reduced growth-
factor-stimulated Thr389 phosphorylation in intact cells; S6K1
bears substantial Thr229 but not Thr389 phosphorylation in serum-
deprived cells, and PDK1− / − embryonic stem cells lack Thr389

phosphorylation [50,68,74]. A recent study demonstrates that
mTOR-mediated phosphorylation of S6K1 on Thr389 in vitro
(using a C-terminally truncated S6K1 allele) requires prior in vitro
phosphorylation by PDK1 on Thr229 [55]. Owing to insufficient
data, the widely accepted Model 1 does not order TM site
phosphorylation on Ser371 relative to HM and T-loop site phos-
phorylation. Recent data supporting alternate Model 2, however,
suggest that TM site phosphorylation represents an early event
that occurs prior to HM and T-loop site phosphorylation [55].

Generation of rapamycin-resistant S6K1 mutants

S6K1 structure–function analysis has generated various
rapamycin-resistant mutants, which have proven useful as tools
to identify mTORC1-regulated cellular processes mediated by
S6K1 [75–77]. �NT/�CT represents the first rapamycin-resistant
mutant [61]. Although possessing low intrinsic catalytic activity,
this mutant bears complete rapamycin resistance. Addition
of phospho-mimetic T389E to �NT/�CT (�NT-T389E-�CT)
creates a constitutive kinase with full activity and complete
rapamycin resistance [59]. Similarly, targeted inactivation of the
C-terminal RSPRR-motif within the F5A-T389E backbone (F5A-
T389E-R3A) recapitulates the behaviour of the F5A-T389E-�CT
mutant [66]. This F5A-T389E-R3A mutant thus represents an
improved rapamycin-resistant S6K1 allele due to its full-length
nature.

The presence of Thr389 phosphorylation on S6K1-�NT/�CT
isolated from rapamycin-treated cells questioned the idea
that mTORC1 represents the sole S6K1 Thr389 kinase. In
�NT/�CT, serum and insulin promote Thr389 phosphorylation
and kinase activation in a completely rapamycin-resistant manner,
suggesting that a rapamycin-insensitive kinase mediates Thr389

phosphorylation [61,63]. This conundrum was resolved in
2005 with the discovery that rapamycin-insensitive mTORC2
mediates non-physiological S6K1 Thr389 phosphorylation in
S6K1 mutants lacking a C-terminus [78]. A notable feature of
S6Ks is their rather atypical C-terminal extension not found
in other AGC kinase family members. The absence of this
C-terminal extension in Akt may explain why mTORC2 mediates
phosphorylation of the Akt HM site Ser473. This knowledge
explains the range of sensitivities to rapamycin displayed by
various S6K1 mutants. In the dead �NT allele, mTORC1
(mTOR/raptor) cannot dock to S6K1 and phosphorylate Thr389,
and mTORC2 (mTOR/rictor) cannot phosphorylate Thr389 due to
steric hindrance imposed by the extended C-terminus [78]. In
the partially rapamycin-resistant �CT mutant, both rapamycin-
sensitive mTORC1 and rapamycin-insensitive mTORC2 co-
operatively mediate Thr389 phosphorylation. In �NT/�CT
(and F5A-�CT), only rapamycin-insensitive mTORC2 mediates
Thr389 phosphorylation.
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S6K1 regulation by other less well-defined modes

Although phosphorylation represents the best understood
mechanism underlying S6K1 regulation, roles for other
PTMs (post-translational modifications) have been proposed,
including phosphatase-mediated dephosphorylation, acetylation,
ubiquitination and regulated subcellular localization.

Dephosphorylation

Addition of rapamycin to cycling cells in culture results in rapid
dephosphorylation of S6K1 (Thr389), suggesting action by a regu-
lated phosphatase. Indeed, S6Ks have been suspected to represent
targets of PP2A (protein phosphatase 2A)-like phosphatases. In
S. cerevisiae, TOR regulation of several substrates occurs via
suppression of PP2A-like phosphatases [79]. In mammals, PP2A
reportedly co-immunoprecipitates with S6K1 [80]; moreover, an
independent study showed that PP2A binds wild-type but not
�NT/�CT S6K1 [81]. It is important to note, however, that
since the late 1990s there has been little follow-up regarding the
role of PP2A-like phosphatases in S6K1 regulation. Recent work
in Drosophila melanogaster demonstrates that genetic ablation
of the PP2A regulatory subunit B’ (PP2A-B’) leads to dS6K
(Drosophila S6K) deregulation and a variety of metabolic defects
[82]. High levels of phosphorylated S6K (on Thr389) were also
detected in human cells upon knockdown of PPP2R5C, the human
PP2A-B’ orthologue [82]. Whether mTOR suppresses a PP2A-
like phosphatase to modulate S6K1 Thr389 phosphorylation in
mammals as in yeast remains unclear at this time.

Acetylation and ubiquitination

Although significantly less well understood relative to protein
phosphorylation, acetylation and ubiquitination represent addi-
tional PTMs that modify protein function. Two acetyltransferase
enzymes, p300/CBP (cAMP-response-element-binding protein-
binding protein) and PCAF (p300/CBP-associated factor),
reportedly interact with and acetylate S6K1 and S6K2 both
in vitro and in vivo [83]. Acetylation of S6K1 occurs at
the extreme C-terminus (Lys516) in response to mitogens,
and acetylation and phosphorylation events appear to occur
independently of one another [84]. Although the function of
acetylation remains unclear, this PTM may serve to stabilize
S6Ks, as treatment of cells with the HDAC (histone deacetylase)
inhibitor trichostatin A increases S6K2 acetylation and protein
abundance [83]. Polyubiquitination of proteins induces their
degradation by the 26S proteasome. Both S6K1 and S6K2
appear to experience this PTM in response to mitogen
stimulation [85,86]. Identified in a yeast two-hybrid screen
as an S6K1-intereacting protein, the ubiquitin ligase ROC1
was shown to interact with and ubiquitinate S6K1 [87]. As
RNAi (RNA interference) against ROC1 increases steady-state
levels of S6K1, these results suggest that polyubiquitination
may destabilize S6K proteins and thus may function as a
mechanism for signal attenuation. Indeed, it was reported recently
that Akt phosphorylation on its HM site (Ser473) induces Akt
polyubiquitination and subsequent degradation as a means to
attenuate Akt signalling [88]. Future work will be required
to define the roles of acetylation and polyubiquitination in S6K
regulation and function.

Subcellular localization

Whether subcellular localization of S6K1 and S6K2 contributes
to their regulation and/or function remains an important
unresolved question. The lack of antibodies that specifically detect

endogenous S6K1 and S6K2 isoforms by immunofluorescence
of fixed cells has precluded such a traditional approach. Thus
the limited analysis performed so far has relied on either
immunofluorescence of tagged exogenously-expressed kinases
or cellular fractionation, a challenging biochemical technique.
Treatment of cells with the nuclear export inhibitor leptomycin
B causes p70-S6K1, p54-S6K2 and mTOR to accumulate
in the nucleus (even though p70-S6K1 does not possess an
obvious NLS), indicating that these isoforms shuttle between the
cytosol and nucleus [89,90]. p54-S6K2 was found to localize
predominantly to the nucleus (probably due to the presence of
both N- and C-terminal NLS motifs), and thus leptomycin B
had little effect [17,90]. Activation of PKCs via the phorbol
ester PMA induced the phosphorylation of both S6K2 isoforms
within their C-terminal NLS motifs, which promoted the shuttling
of p54- but not p56-S6K2 from the nucleus to the cytosol
[90]. It was proposed that NLS phosphorylation blunted NLS
function. These data support the idea that S6Ks may shuttle
between different subcellular compartments. More research will
be required, however, to understand whether S6K subcellular
localization controls S6K regulation and/or cellular function.

S6K2 regulation

Although the majority of studies aimed at elucidating S6K
regulation have focused on S6K1, more limited results suggest
that S6K2 regulation occurs via similar, although probably
non-identical, mechanisms [91–93]. Insulin, serum and phorbol
esters activate S6K2, similar to S6K1, and seven of eight
phosphorylation sites found in S6K1 are also conserved in S6K2
(Thr228, Ser370, Thr388, Ser403, Ser410, Ser417 and Ser423 on p54-
S6K2) [15–17,93]. Insulin-stimulated activation of S6K2 requires
C-terminal phosphorylation (on Ser410, Ser417 and Ser423), yet
the C-terminus of S6K2 exerts a more potent inhibitory effect on
kinase function than the C-terminus of S6K1 [91,92]. Wortmannin
and rapamycin block insulin-stimulated activation of S6K2 [15–
17,93], suggesting that mTORC1 phosphorylates the HM site
(Thr388) and PDK1 phosphorylates the activation loop site (Thr228),
similar to S6K1. Consistent with these data, phosphorylation of
S6K2 on the PDK1 site (Thr228) and the mTORC1 site (Thr388) is
required for kinase activity, as alanine residue substitution mutants
at these sites render S6K2 enzymatically dead [93]. Unlike S6K1,
phospho-mimetic substitution at Thr388 (T388E) renders S6K2
fully active, as well as wortmannin- and rapamycin-resistant
[93]. Lastly, S6K2 localizes predominantly to the nucleus via a
C-terminal NLS (KKSK474RGR), disruption of which results in
cytosolic localization [17]. Mutation of K474M within the NLS
had no effect on S6K2 kinase activity, however, indicating that
S6K2 activation does not require its ability to localize to the
nucleus [17].

mTOR SIGNALLING NETWORKS

The absolute requirement for mTOR in S6K activation renders
understanding of mTOR regulation and mTORC network wiring
essential if we hope to fully understand S6K regulation and
function. TOR belongs to the PIKK (PI3K-related kinase)
superfamily, yet acts as a serine/threonine protein kinase, not a
lipid kinase [1,2]. TOR functions as an environmental sensor,
as it responds to and integrates diverse cellular signals (e.g.
growth factors and mitogens, nutrients, energy, stress) to modulate
cell physiology in an appropriate manner. TOR forms the
catalytic core of at least two known multi-subunit complexes,
TORC1 and TORC2. These complexes contain shared as well as
unique partners that confer differential sensitivity to rapamycin,
regulation and substrate selectivity. Acute treatment of cells with
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Figure 3 Regulation, substrates and functions of the mTORC1–S6K1 signalling network

S6K1 activation occurs via co-ordinated phosphorylation by mTORC1 and PDK1. Growth factors/mitogens, amino acids and energy activate, whereas cellular stresses such as hypoxia and depleted
ATP levels suppress, the mTORC1–S6K1 axis. Through its identified substrates, and other unclear mechanisms, S6K1 promotes several broad cellular processes: protein production, cell growth/size,
cell survival, gene transcription, adipocyte differentiation and synaptic plasticity. S6K1 regulates protein production in several ways: mRNA processing (via SKAR and CBP80), cap-dependent
translation initiation (via PDCD4, eIF4B and co-ordination with 4EBP1) and translational elongation (via eEF2 kinase); additionally, S6K may regulate ribosome function (via rpS6; function unknown)
and nascent protein folding (via CCTβ). S6K1 participates in cell survival signalling [via BAD, Mdm2, GSK3, and possibly through rictor (mTORC2)], regulates two transcription factors [CREMτ and
oestrogen receptor α (ERα)], modulates synaptic plasticity (via FMRP) and promotes negative feedback on PI3K signalling (via IRS1, thus suppressing insulin/IGF sensitivity, and rictor). Refer to
the main text for more detail. Key: black arrows, activation; black blocks, inhibition; circled question mark, unclear function; grey broken arrow, activates through unknown effectors; yellow circled P,
phosphorylates; orange ovals, S6K substrates; green arrows/text, positive mTORC1–S6K1 inputs; brown arrows/text, negative mTORC1–S6K1 inputs. IR, insulin receptor; IGFR, insulin-like growth
factor receptor.

rapamycin inhibits mTORC1 but not mTORC2 [6], although
chronic rapamycin treatment inhibits mTORC2 by blocking
complex assembly [94].

In mammals, both mTORC1 and mTORC2 contain mTOR,
mLST8 (mammalian lethal with SEC13 protein)/GβL (G-protein
β-protein subunit-like) and deptor (DEP domain-containing
mTOR-interacting protein) [3,95] (Figure 3). The presence of
raptor and PRAS40 (proline-rich Akt substrate of 40 kDa) defines
mTORC1, whereas the presence of rictor, mSin1 (mammalian
stress-activated MAPK-interacting protein 1) and protor 1/2
(protein observed with rictor 1/2) defines mTORC2. Raptor and
rictor serve as critical scaffolds that control complex assembly,
regulation by cellular signals and substrate choice. Deptor
functions as a negative regulator of both complexes, whereas
the function of mLST8/GβL remains unclear. Within mTORC1,
PRAS40 suppresses mTORC1 signalling, either by functioning
as a bona fide inhibitor or competitive substrate. It is important
to note that the roles of the various mTOR-associated proteins

in mTORC1/2 function remain incompletely defined. Today, we
understand the regulation of mTORC1 significantly better than
mTORC2.

mTORC1 regulation

mTORC1 responds to a diverse array of upstream signals,
including growth factors, mitogens, and cytokines, amino acids,
energy and cell stress. Below, we review several of the best-
understand pathways that control mTORC1 signalling, thus
enabling mTORC1 to function as an environmental sensor
(Figure 3).

Insulin/PI3K signalling

The insulin/PI3K pathway represents the best-characterized
activator of mTORC1 [1,95]. Binding of insulin or IGF to its
cognate cell-surface receptor leads to tyrosine phosphorylation
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of IRS (insulin receptor substrate) proteins, followed by
recruitment and activation of PI3K. Generation of PtdIns(3,4,5)P3

on the plasma membrane by PI3K leads to PDK1-mediated
phosphorylation of Akt on its T-loop site (Thr308) and mTORC2-
mediated activation on its HM site (Ser473) [67,96]. Activated
Akt then phosphorylates Tsc2 (tuberous sclerosis complex 2) on
several sites (Ser939 and Thr1462) to suppress the inhibitory effect of
the Tsc1–Tsc2 complex on mTORC1, thus leading to increased
mTORC1 signalling [97]. In addition to phosphorylating Tsc2,
Akt phosphorylates PRAS40 (Ser246) to disrupt the inhibitory
raptor–PRAS40 interaction, thus promoting mTORC1 signalling
[98,99]. Tsc1 and Tsc2 function as tumour suppressors [100].
Loss of either causes the autosomal dominant TSC, a disease
characterized by benign tumour formation in various organs,
including the brain, kidneys and heart. Tsc2 (also called tuberin)
acts as a GAP (GTPase-activating protein) toward the Ras-like
small GTP-binding protein Rheb, whereas Tsc1 (also called
hamartin) functions to maintain the Tsc1–Tsc2 complex stability
[101,102]. Rheb represents the most proximal positive regulator
of mTORC1 known to date. Rheb reportedly binds weakly to the
mTOR kinase domain to enhance substrate recruitment in a GTP-
dependent manner [103,104]. Upon activation by insulin, mTOR
within mTORC1 and mTORC2 autophosphorylates (Ser2481); thus
mTOR Ser2481 autophosphorylation monitors intrinsic catalytic
activity of mTOR complexes [105].

The current model posits that insulin/PI3K signalling leads to
Akt-mediated inactivation of Tsc1/Tsc2 function, which in turn
promotes Rheb-GTP-mediated activation of mTORC1. However,
many details implicit to this model remain incomplete. For
example, it remains unclear how Akt-mediated phosphorylation of
Tsc2 suppresses Tsc1–Tsc2 function. Does Tsc2 phosphorylation
inhibit Tsc2 GAP activity, dissociate Tsc2 from Tsc1, and/or
induce Tsc2 degradation [100]? The mechanism by which Rheb
promotes mTORC1 signalling also remains poorly understood,
and the GEF (guanine-nucleotide-exchange factor) that loads
Rheb with GTP remains unknown. Emerging data also indicate
that phosphorylation of mTOR and its interacting partners (e.g.
raptor, rictor, PRAS40 and deptor) contributes to mTORC1
and mTORC2 regulation. For example, phosphorylation of
mTOR on several sites (Ser1261, Ser2159 and Thr2164) promotes
mTORC1 signalling and cell growth [106,107]. In response to the
appropriate signals, mTOR, RSK and ERK (extracellular-signal-
regulated kinase) phosphorylate raptor, whereas Akt and mTOR
phosphorylate PRAS40, events that promote mTORC1 signalling
[98,99,108–113]. Additionally, growth factor and nutrient signals
promote the phosphorylation and degradation of deptor by
the ubiquitin–proteasome system, which results in increased
mTORC1 and mTORC2 signalling [114].

Ras/MAPK signalling

Independent of the insulin/PI3K/Akt pathway, the mitogen-
activated Ras/MEK (MAPK/ERK kinase)/MAPK signalling
cascade activates mTORC1 by converging on Tsc1/Tsc2.
Reminiscent of Akt phosphorylation, ERK and its substrate RSK
phosphorylate Tsc2 (Ser540, Ser644 and Ser1798 respectively), which
inhibits Tsc1/Tsc2 and thus promotes Rheb-mediated mTORC1
activation [115,116]. The Ras/MAPK pathway also converges
on raptor to promote mTORC1 function. Both ERK and RSK
phosphorylate raptor (on Ser8/Ser696/Ser863 and Ser719/Ser721/Ser722

respectively) [110,111]. Thus the PI3K/Akt and Ras/MAPK
pathways signal in a parallel manner to regulate Tsc1/Tsc2
and raptor function, indicating a level of functional redundancy
between these two mitogen-regulated signalling systems.

PLD (phospholipase D) signalling

PA (phosphatidic acid), a lipid second messenger produced
by PLD-mediated hydrolysis of phosphatidylcholine, binds the
mTOR FRB domain to promote mTORC1 signalling in a
rapamycin-sensitive manner [117]. Growth factors and amino
acids activate PLD, which appears to function downstream of
Rheb-GTP [118]. More recently, it was reported that PA promotes
assembly of both mTORC1 and mTORC2, which accordingly
promotes signalling [119]. Interestingly, rapamycin competes
for PA binding to mTOR, and much higher concentrations of
rapamycin are required for PA–mTORC2 than PA–mTORC1
competition. These results provide an intriguing molecular model
for the rapamycin insensitivity of mTORC2 relative to mTORC1.

Cytokine signalling

Downstream of TNFα (tumour necrosis factor α), activated
IKKβ [inhibitor of NF-κB (nuclear factor-κB) kinase-β] binds to
and phosphorylates Tsc1 (Ser487 and Ser511), resulting in Tsc1–
Tsc2 dissociation, mTORC1 activation and increased tumour
angiogenesis and insulin resistance [120,121]. Additionally,
insulin and TNFα promote mTORC1 signalling via a mechanism
that involves direct interaction of IKKα with mTORC1 in
an Akt-dependent manner [122,123], which promotes NF-
κB-dependent transcriptional activity [124]. Moreover, recent
studies suggest that the IKK-related kinase TBK1 (TNF-receptor-
associated factor-associated NF-κB activator-binding kinase 1)
phosphorylates Akt on both its T-loop and HM sites, Thr308 and
Ser473 respectively [125–127]. Taken together, these results reveal
novel links between innate immune signalling and mTOR that
warrant further exploration.

Nutrient sensing

Sufficient levels of amino acids are absolutely required for
mTORC1 function. Thus even in the presence of abundant growth
factors, withdrawal of amino acids, particularly the branched-
chain amino acids leucine and isoleucine, rapidly inhibits
mTORC1 signalling. As amino acid withdrawal suppresses
mTORC1 signalling in Tsc-deficient cells [128], amino acid
sensing appears to converge on mTORC1 downstream of Tsc1/2.
The bidirectional amino acid permease SLC7A5-SLC3A2 (where
SLC, solute carrier family), which imports leucine across the
plasma membrane into the cell while exporting glutamine out, is
essential for mTORC1 activation [129]. Although the mechanism
by which cells sense amino acids levels remains a mystery, several
biochemical mediators that link amino acid sensing to mTORC1
have been reported, including hVPS34, a class III lipid kinase
known to function in vacuolar sorting and autophagy in yeast, the
MAP4K3 (MAPK kinase kinase kinase 3), the RalA GTPase and
the Rag GTPases [1,2,95].

The Rag family of GTPases represents the best-characterized
link between amino acid sensing and mTORC1 [130,131]. Rags
function as heterodimers in which RagA or RagB dimerizes
with RagC or RagD, with each Rag class bearing opposing
nucleotide-bound states. Upon amino acid stimulation, active
Rag heterodimers (i.e. RagBGTP–RagDGDP) bind mTORC1 directly
via raptor, which enables mTORC1 to localize to a Rab7-
positive late endosomal/lysosomal membrane compartment that
has been shown to also contain exogenously expressed Rheb
[130]. Endogenous Rheb, however, has not been localized to this
compartment. Such a model explains why growth-factor-induced
mTORC1 activation absolutely requires amino acids: mTORC1
must reside in the correct subcellular compartment to undergo

c© The Authors Journal compilation c© 2012 Biochemical Society



10 B. Magnuson, B. Ekim and D. C. Fingar

activation by Rheb. In a follow-up study, a complex containing
three proteins (MP1, p14 and p18) renamed ‘Ragulator’ was
found to reside on lysosomal membranes and to bind to
and recruit Rag heterodimers [132]. Thus, upon amino acid
stimulation, active Rag heterodimers bound to the Ragulator
complex recruit mTORC1 to lysosomes for activation in a Rheb-
dependent manner. Interestingly, the MP1–p14–p18 complex was
first identified as a scaffold for MEK that is critical for the
endosomal localization and activation of a branch of the MAPK
pathway [133]. Thus it appears as though the Ragulator complex
regulates at least two signalling systems via endosomal-anchored
spatial control. Indeed, forced localization of mTORC1 to the
lysosomal surface eliminates the requirement of amino acids,
Rag GTPases and the Ragulator for mTORC1 activation, but not
the requirement for Rheb [132]. Recently, Rab family GTPases,
which function in endocytic trafficking (e.g. Rab5 and Rab7),
were found to modulate mTORC1 signalling [134]. Additionally,
the Rho family GTPase Rac1 was recently reported to positively
regulate mTORC1 (and mTORC2) by directly binding mTOR and
controlling its localization to specific internal membranes [135].
These results lend support to the idea that subcellular trafficking
of mTORC1 contributes to its regulation, with important roles for
small G-proteins.

Energy and stress sensing

Diverse forms of cell stress down-regulate mTORC1 signalling,
including glucose withdrawal, hypoxia, DNA damage and ER
(endoplasmic reticulum) stress [95]. Energy stress induced by
glucose withdrawal or by chemical inhibition of glycolysis or
mitochondrial respiration leads to a rapid fall in cellular ATP
levels. The resulting rise in the cellular AMP/ATP ratio activates
AMPK (AMP-activated kinase), a trimeric complex composed
of α/β/γ subunits [136]. Activated AMPK phosphorylates Tsc2
(Thr1227 and Ser1345) to augment Tsc1–Tsc2-mediated inhibition
of mTORC1 [137]. In Tsc-deficient cells, however, energy stress
still induces partial inhibition of mTORC1, suggesting a Tsc-
independent mechanism for AMPK regulation of mTORC1.
Indeed, AMPK phosphorylates raptor (Ser792 and Ser722) to down-
regulate mTORC1 in response to energy stress [138]. Independent
of AMPK, energy stress inhibits mTORC1 by suppressing
Rheb-GTP loading via a mechanism involving PRAK-mediated
phosphorylation (Ser130) and inhibition of Rheb in response
to p38β MAPK signalling [139]. Thus AMPK-dependent and
-independent mechanisms co-operate to down-regulate mTORC1
in response to energy stress.

Hypoxia also reduces ATP levels, thus leading to AMPK-
mediated down-regulation of mTORC1 by mechanisms described
above. Via a mechanism independent of cellular ATP levels,
hypoxia stabilizes the HIF1 (hypoxia-inducible factor 1)
transcription factor, which induces expression of a number of
survival genes, including REDD1 (regulated in development and
DNA damage responses 1) [140,141]. Although the mechanism of
action of REDD1 remains poorly understood, REDD1 appears to
bind 14-3-3 proteins, inducing their dissociation from Tsc2 and
leading to Tsc1–Tsc2 activation and thus mTORC1 inhibition
[142]. In response to DNA damage, stabilization and activation
of the p53 transcription factor and tumour suppressor leads to
induction of sestrins 1 and 2, which bind to and activate AMPK
via an unknown mechanism to down-regulate mTORC1 [143]. ER
stress results from the accumulation of misfolded proteins, which
activates a signal transduction cascade known as the unfolded
protein response that slows global protein synthesis. Indeed, ER
stress leads to transcriptional up-regulation of REDD1, resulting

in down-regulation of mTORC1 signalling [144]. Clearly, diverse
signals of cell stress utilize a variety of molecular mechanisms to
ensure mTORC1 inhibition during unfavourable conditions.

mTORC2: regulation and function

The regulation and function of mTORC2 remains poorly
understood and thus represents an important area for future
research. mTORC2 phosphorylates Akt, SGK1 (serum- and
glucocorticoid-induced protein kinase 1) and PKCα on their
hydrophobic motif sites (Ser473, Ser422 and Ser657 respectively)
[96,145,146]. Indeed, rictor− / − , mSin1− / − and mLST8/GβL− / −

MEFs (mouse embryonic fibroblasts) display significantly
reduced Akt Ser473 phosphorylation [147,148]. On the basis of
these substrates, mTORC2 probably controls cell proliferation,
cell survival and cell metabolism. Additionally, in yeast and
mammals, mTORC2 appears to modulate the actin cytoskeleton
[42,149,150]. mTORC2 also promotes TM site phosphorylation
on Akt (Thr450) and several PKCs (PKCα Thr638 and PKCβ Thr641)
(directly or indirectly) [151,152], which enhances their stability
and folding. In the case of Akt Thr450 phosphorylation, mTORC2
associates with ribosomes to promote co-translational TM site
phosphorylation and stability of nascent Akt polypeptides [56].
As the mTORC1 substrate S6K1 and the mTORC2 substrates
Akt, SGK1 and PKCα all belong to the AGC kinase family, an
emerging theme in the mTOR field is that mTORC1 and mTORC2
phosphorylate AGC kinases. It is important to note, however, that
additional kinases have been reported to mediate Akt HM site
phosphorylation on Ser473, including DNA-PK (DNA-dependent
protein kinase) [153], and quite recently the IKK-related kinases
TBK1 and IKKε [125–127], indicating that several upstream
kinases co-operate to regulate this important survival kinase.
As insulin/PI3K signalling promotes Akt Ser473 phosphorylation,
and as pharmacological inhibition of PI3K reduces mTORC2
kinase activity in vitro [154], PI3K presumably lies upstream of
mTORC2. Consistent with this idea, insulin/PI3K signalling in
cultured adipocytes promotes mTOR phosphorylation (Ser1261) as
part of mTORC2 [106]. Interestingly, the Tsc1–Tsc2 complex
promotes rather than suppresses mTORC2 activity, the opposite
to its effect on mTORC1, hinting that mTORC2 regulation may be
quite different from that of mTORC1 [154,155]. As the mTORC2
substrates Akt, SGK1 and PKCα respond to different growth
factors, it is likely that several types of growth factor signals
converge on mTORC2.

CELLULAR SUBSTRATES AND FUNCTIONS OF THE mTORC1/S6K1
SIGNALLING AXIS

At the cellular level, mTORC1 functions as a critical regulator
of translation initiation, the rate-limiting step in protein synthesis
in which ribosomes are recruited to mRNA. Increased protein
biosynthetic rates are thought to drive cell growth (an increase
in cell mass and size), a requirement for cells to progress through
the cell division cycle and proliferate (increase in number).
Indeed, mTORC1 promotes cell growth and cell proliferation
in response to anabolic cues via phosphorylation of S6K1 and
4EBP1, at least in part. Although it has been appreciated that
the mTORC1–4EBP1 axis directly controls translation initiation,
identifying substrates and functions of the mTORC1–S6K1 axis
has proven more challenging.

For at least a decade after the discovery of S6K, rpS6
held ground as its one and only substrate. Since then, several
S6K1 substrates have been identified that control protein
production (Figure 3). Additional S6K1 substrates participate in
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the transcriptional control of ribosome biogenesis, metabolism,
lipid synthesis and adipocyte differentiation, as well as cell
survival, DNA damage sensing and synaptic plasticity. An S6K1-
mediated ‘feedback loop’ acts on several components of mTOR
signalling networks, in some cases to down-regulate insulin
signalling, which may contribute to insulin resistance during
states of diabetes and obesity. However, detailed understanding
of the functional significance of S6K1-mediated phosphorylation
for many of these substrates remains limited. It is important to
note that many S6K1 substrates {e.g. rpS6, eIF4B, eEF2K [eEF2
(eukaryotic elongation factor 2) kinase], CCTβ [chaperonin
containing TCP-1 (t-complex protein 1) β], BAD (Bcl-2/Bcl-XL-
antagonist, causing cell death), GSK3 (glycogen synthase kinase
3)} also serve as RSK substrates, illustrating the convergence
of the mTORC1 and MAPK pathways in the common goal of
regulating cell physiology.

Does the S6K–rpS6 axis promote mRNA TOP (terminal
oligopyrimidine) translation?

S6K1-mediated phosphorylation of rpS6 was believed for quite a
while to promote the translation of a class of ∼90 transcripts
known as TOP mRNAs that encode ribosomal proteins and
translation factors [9]. The localization of rpS6 to the boundary
between the 40S and 60S subunits in the mature ribosome and
thus its potential to interact with mRNA, tRNA and translation
initiation factors supported such a notion. In response to growth
factors/mitogens or amino acids, the increased translational
efficiency of TOP mRNAs correlated with S6K1 activation and
rpS6 phosphorylation and occurred in a rapamycin-sensitive
manner [156]. Moreover, expression of a rapamycin-resistant
mutant of S6K1 (T389E) partially rescued the rapamycin-
mediated suppression of TOP translation [157]. Thus increased
TOP translation via the action of the mTORC1–S6K1–rpS6 axis
was thought to prepare cells for a burst in protein synthesis. A
series of subsequent experiments, however, were unable to provide
further support for this long-standing model.

First, although inhibition of PI3K strongly inhibits the
translational activation of TOP mRNAs in response to growth
factors or amino acids, inhibition of mTORC1 with rapamycin
only mediates a partial inhibitory effect, while causing complete
dephosphorylation of S6K1 and rpS6 [158,159]. Secondly,
genetic inactivation of S6K1 in the mouse has no effect on TOP
translation; MEFs from these mice, however, still possess rpS6
phosphorylation, which led to the discovery of S6K2 as a second
rpS6 kinase [14]. Thirdly, mitogens still promote TOP mRNA
translation in a rapamycin-sensitive manner in MEFs lacking
both S6K1 and S6K2 [19]. Thus neither of the two S6K genes
is required for TOP translation. At this point, a role for rpS6
phosphorylation still remained possible, as rpS6 phosphorylation
persisted on two (Ser235 and Ser236) of the five (Ser235, Ser236, Ser240,
Ser244 and Ser247) mitogen-stimulated sites in double-null MEFs
[19]. This observation led to the re-identification of RSK as a
bona fide rpS6 kinase. One final experiment refuted the idea that
rpS6 phosphorylation promotes TOP translation. MEFs isolated
from mice bearing a genetic knockin of a rpS6 mutant containing
alanine residue substitutions at all five mitogen-stimulated sites of
phosphorylation (rpS6P − / − ) exhibit normal TOP translation and,
unexpectedly, the rate of global protein synthesis is actually ∼2.5-
fold higher in these mice [160]. Further analysis confirmed that
insulin promotes TOP translation via the PI3K–Tsc–Rheb–mTOR
pathway in an S6K–rpS6-independent manner [161]. Knockdown
of mTOR strongly reduces the translational efficiency of TOP
mRNAs; knockdown of raptor or rictor, however, results in only a

modest decrease [161]. These data suggest that, although mTOR
regulates TOP translation, it may do so independently of mTORC1
or mTORC2, an intriguing idea that will require further testing.

Protein biosynthesis

Protein biosynthesis represents a major cellular process controlled
by mTORC1, which is co-ordinately regulated by the mTORC1–
S6K1 and mTORC1–4EBP1 axes (Figure 4). The mTORC1–
4EBP1 axis controls critical well-defined steps in the initiation
of cap-dependent translation by assembling the eIF4F complex
at the m7-GTP (7-methylguanosine) cap structure found at the 5′-
end of mRNA transcripts. Significantly less is known regarding
the role of the mTORC1–S6K1 axis in translational control,
however (see the reviews by Ma and Blenis [10] and Hershey et
al. [162] for greater detail). In the absence of mTORC1-activating
stimuli (i.e. growth factors/mitogens, amino acids and energy),
hypophosphorylated 4EBP1 binds to and represses eIF4E, which
directly interacts with the 5′-cap [34]; additionally, a sub-pool
of inactive S6K1 associates with the multi-subunit scaffold
eIF3 [163] (Figure 4A). In response to mTORC1-activating
stimuli, mTORC1 binds to eIF3, where it is well positioned
to phosphorylate S6K1 (on Thr389) and 4EBP1 on several sites
(e.g. Thr37, Thr46, Thr70 and Ser65). mTORC1-mediated 4EBP1
phosphorylation induces the dissociation of 4EBP1 from eIF4E
and the dissociation of S6K1 from eIF3 (Figure 4B). As 4EBP1
and eIF4G (a modular scaffold) bind eIF4E in a mutually exclusive
manner, 4EBP1 dissociation enables binding of eIF4G to eIF4E.
Once bound to eIF4E, eIF4G recruits eIF4A, a helicase critical for
unwinding inhibitory secondary structure in the 5′-untranslated
region of mRNA. These events lead to formation of eIF4F, a
complex composed of eIF4E, eIF4G and eIF4A, on the 5′-cap
(Figure 4C). The assembled eIF4F complex then recruits the 40S
ribosome and the ternary complex (composed of eIF2, Met-tRNA
and GTP) to the 5′-cap to form the 48S translation pre-initiation
complex (Figure 4D).

Upon mTORC1-mediated dissociation of S6K1 from eIF3,
active S6K1 phosphorylates several substrates that function in
translation initiation as well as other steps that drive protein
production, including eIF4B [164,165], PDCD4 (programmed
cell death 4) [166], SKAR (S6K1 Aly/REF-like substrate)
[167,168], eEF2K [169], CCTβ [170], CBP80 [171] and rpS6,
a component of the 40S ribosome (Figures 3 and 4C). S6K1- (and
RSK-) mediated phosphorylation of eIF4B (Ser422) induces the
recruitment of eIF4B to eIF4A and eIF3 [163–165] (Figures 4C
and 4D). eIF4B functions to enhance eIF4A helicase activity, thus
alleviating inhibitory secondary structure in the 5′-untranslated
region. S6K1-mediated phosphorylation of the eIF4A inhibitor
PDCD4 (on Ser67) further enhances eIF4A helicase activity.
Phosphorylation of PDCD4, a tumour suppressor, promotes its
recognition by the ubiquitination ligase SCFβ − TRCP and thus its
degradation by the proteasome [166]. SKAR, a nuclear mRNA-
binding protein of the Aly/REF family, couples transcription
with mRNA splicing and nuclear export by interacting with
the exon junction complex, which binds to spliced mRNAs
[168]. Upon growth-factor-stimulated activation, S6K1 but not
S6K2 binds to and phosphorylates SKAR (Ser383/Ser385) to
enhance the translational efficiency of newly spliced mRNA
[167]. S6K1 (and RSK) also phosphorylates and inactivates
eEF2K (Ser366), which phosphorylates and inactivates eEF2
[169]. Thus S6K1 augments the activity of eEF2, a protein
that catalyses translocation (codon shifting) during translation
elongation. S6K1 (and RSK) phosphorylates CCTβ (Ser260), the
β-subunit of chaperonin containing TCP-1 [170]. CCTβ, a large
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Figure 4 Model for initiation of cap-dependent translation by the mTORC1–
4EBP1 and mTORC1–S6K1 axes

(A) In the absence of mTORC1-activating stimuli (i.e. growth factors/mitogens, amino acids and
energy), hypophosphorylated 4EBP1 binds to eIF4E on the mRNA 5′-cap to suppress assembly
of the pre-initiation complex. (B) In response to mTORC1-activating stimuli, mTORC1 docks
to eIF3, localized at the 5′-cap, whereby it phosphorylates 4EBP1 and S6K1, inducing 4EBP1
release from eIF4E and S6K1 release from eIF3. (C) Dissociation of 4EBP1 enables eIF4G to dock
to eIF4E, thus initiating assembly of the eIF4F complex (eIF4E, eIF4G and eIF4A). Upon release,
S6K1 phosphorylates eIF4B, which induces eIF4B binding to eIF4A, an event that enhances
eIF4A helicase activity. S6K also phosphorylates and inactivates PDCD4, which functions as
an eIF4A inhibitor. (D) Assembly of these factors enables binding of the 40S ribosome and the
ternary complex (eIF2, Met-tRNA and GTP) at the 5′-cap and thus formation of the pre-initiation
complex (PIC) to initiate cap-dependent translation. See the main text for more details.

multi-subunit complex that interacts with ribosomes and nascent
polypeptides, functions in protein folding. Knockdown of CCTβ
reduces cell proliferation, a phenotype rescued upon expression
of a phospho-mimetic S260D but not a phospho-defective S260A
mutant, thus linking CCTβ phosphorylation by S6K1/RSK to

CCTβ function [170]. Whether phosphorylation actually affects
CCTβ protein folding function will require further study. CBP80,
together with CBP20, forms a heterodimeric complex that co-
transcriptionally binds the 5′-cap and enhances mRNA splicing.
The functional consequence of S6K1-mediated phosphorylation
of CBP80 remains unknown [171]. Lastly, S6K1 phosphorylates
rpS6 on several sites (Ser235, Ser236, Ser240 and Ser244), whereas
RSK phosphorylates a subset of these sites (Ser235 and Ser236).
It is important to note that the functional significance of rpS6
phosphorylation remains unclear [9,11]. Taken together, these
data indicate that the mTORC1–4EBP1 and mTORC1–S6K1 axes
control several diverse steps in protein biosynthesis.

Cell growth compared with cell proliferation

Cell growth

A plethora of studies in cell culture, flies and mice have revealed
cell growth as a major cellular function of the mTORC1–S6K1
axis. The role of S6K in cell growth was first demonstrated
with the finding that inactivation of dS6K in D. melanogaster
results in severe developmental delay and lethality with a marked
reduction in body and organ size in surviving animals [172].
Strikingly, this small body/organ phenotype results from a cell
autonomous decrease in cell and organ size, without an effect on
cell number [172]. Consistently, inhibition of mTORC1 and S6K
via rapamycin treatment of cultured mammalian cells reduces cell
size, and expression of rapamycin-resistant S6K1 alleles (T389E-
D3E and T389E-�CT) rescues the rapamycin-induced decrease
in cell size [75]. Moreover, acute knockdown of S6K1 with RNAi
reduces cell size, and overexpression of S6K1 increases cell size
[75,167,173]. As in flies, inactivation of S6K1 in the mouse
reduces body and cell size, with pancreatic β-cells and myoblasts
showing a prominent decrease in size [14,76,174]. The single
knockout of S6K2 in the mouse actually results in larger animals,
whereas S6K1− / − /S6K2− / − double-knockout animals are similar
in size to single S6K1− / − animals [19]. These data indicate that
S6K1 but not S6K2 promotes organismal growth.

MEFs and myoblasts isolated from S6K1− / − /S6K2− / − double-
knockout mice display a reduced cell size relative to wild-
type controls, but a similar cell size relative to wild-type MEFs
treated with mTOR catalytic inhibitors (e.g. Torin1 and PP242)
[76,175]. Moreover, introduction of a constitutively active S6K1
(T389E-D3E) allele into double-knockout MEFs rescues this
decrease in cell size in both the absence or presence of mTOR
catalytic inhibitors [175]. These results reveal the S6Ks (most
likely S6K1) as major downstream effectors of mTORC1-driven
cell growth [175]. rpS6P − / − MEFs also display a significantly
reduced cell size compared with wild-type controls; moreover,
rapamycin fails to decrease their size further [160]. These results
reveal an important role for rpS6 phosphorylation in cell growth
control. It is important to note, however, that S6K1 can promote
cell growth independently of rpS6 phosphorylation, as small
S6K1− / − myotubes show normal levels of rpS6 phosphorylation
(due to S6K2) [76]. The identification of these additional S6K1
substrates awaits future research. SKAR may represent one of
these additional S6K1 effectors that controls cell growth, as
its knockdown reduces cell size [167]. Lastly, the ability of
the mTORC1–S6K1 axis to promote lipid biosynthesis as well
as protein biosynthesis contributes to cell growth control, as
knockdown of the lipogenic transcription factor SREBP (sterol-
regulatory-element-binding protein) in flies or mammalian cells
blunts the increase in cell size driven by PI3K/Akt signalling
[176].
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Cell proliferation

mTORC1 signalling promotes cell cycle progression and
cell proliferation, although the molecular details underlying
mTORC1-controlled proliferation remain poorly understood.
Although several studies suggest that the mTORC1–S6K1 axis
promotes cell cycle progression and cell proliferation, this
notion remains somewhat controversial. On the one hand,
overexpression of rapamycin-resistant S6K1 confers partial
protection from rapamycin-inhibited G1-/S-phase progression
and cell proliferation, and acute knockdown of S6K1 with
RNAi reduces G1-/S-phase progression [76,177]. On the other
hand, S6K1− / − /S6K2− / − double-knockout MEFs and myoblasts
proceed through the cell cycle and proliferate at rates that
are similar to wild-type cells [76,175]. How can this apparent
paradox be explained? Perhaps S6K1 signalling is sufficient to
promote cell proliferation when other mTOR effectors are inactive
(as during rapamycin treatment) or perhaps other signalling
systems compensate to fully rescue proliferation under chronic
inactivation of S6K function (as during S6K1− / − /S6K2− / −

knockout). Alternatively, rapamycin-resistant S6K1 could signal
in a manner different from the wild-type kinase. To confuse
matters more, rpS6P − / − MEFs proliferate faster than wild-
type controls [160]. Other data suggest that overexpression of
S6K1 and S6K2 confers a proliferative advantage on cells in
culture [177–179]. Similar to S6K1, overexpression of rapamycin-
resistant S6K2 (T388E) partially rescues rapamycin-inhibited G1-
/S-phase progression and cell proliferation [178]. Lastly, S6K2
may play a role in mitosis, as S6K2 but not S6K1 reportedly
localizes to the centrosome, and S6K2 kinase activity peaks in
G2- and M-phases [180,181].

The mTORC1–4EBP1 axis appears to promote cell cycle
progression and cell proliferation independent of the mTORC1–
S6K1 axis. Overexpression of eIF4E under full serum conditions
accelerates G1-/S-phase progression and confers partial protection
from rapamycin, whereas dominant inhibitory 4EBP1-F114A
(TOS motif) or 4EBP1-AA (phosphorylation site-defective)
mutants reduce G1-/S-phase progression (by blunting mTORC1-
mediated 4EBP1 phosphorylation and derepression) [177].
Additionally, MEFs lacking 4EBP1s display resistance to the
inhibition of cell cycle progression and cell proliferation caused
by mTOR catalytic inhibitors or raptor knockdown [175]. These
data reveal the 4EBPs as major cellular effectors of mTORC1-
driven cell cycle progression and cell proliferation [175].

Feedback signalling

The mTORC1–S6K1 axis participates in several feedback loops.
Chronic mTORC1-mediated activation of S6K1, as in Tsc1− / −

or Tsc2− / − cells that lack tumour-suppressive function, induces
a state of cellular insulin resistance by a mechanism termed the
‘negative-feedback loop’ [182,183]. S6K1 signalling represses
IRS-1 gene expression and directly phosphorylates IRS-1 on
several inhibitory serine residues (i.e. Ser307 and Ser1101 in
humans) (Figure 3) [183–186]. In a co-operative manner,
mTOR phosphorylates IRS-1 (Ser636/Ser639) [187]. IRS-1 serine
phosphorylation induces IRS-1 degradation via the proteasome
and thus uncouples PI3K from the insulin/IGF receptor, leading
to reduced signalling to downstream PI3K effectors, including
Akt and the Ras/MAPK pathway [184]. This negative-feedback
loop may explain in part the insulin resistance common to
obesity, a state of chronic nutrient overload and mTORC1
activation. The inactivation of this negative-feedback loop upon
mTORC1 inhibition probably also explains in part why rapalogues
(e.g. CCI-779 and RAD001) have failed to perform in anti-

cancer clinical trials as well as originally hoped [6,7]. Upon
mTORC1 activation, S6K1 also participates in other feedback
loops of unclear functional significance. S6K1 phosphorylates
mTOR (Ser2448) [188,189] and rictor (Thr1135) [190–193]. As
an mTOR S2448A mutant exhibits normal mTORC1 signalling,
analysis of the mTOR Ser2448 phosphorylation state serves only
as a read-out for S6K1 activity. Although one report suggested
that S6K1-mediated phosphorylation of rictor Thr1135 suppresses
mTORC2 signalling to Akt [190], other reports did not report
such a phenotype [191–193]. In parallel to the mTORC1–S6K1
axis, recent work indicates that mTORC1 phosphorylates Grb10
to mediate negative feedback to insulin/IGF signalling [194,195].

Gene expression

Transcriptional profiling using microarrays has defined both
positive and negative roles for mTORC1 signalling in control
of gene expression [196–198]. These analyses have revealed
mTORC1 signalling to control diverse metabolic genes. mTORC1
signalling up-regulates genes involved in lipid/sterol, nucleotide
and protein synthesis, as well as genes involved in mitochondrial
oxidative function, glycolysis and the pentose phosphate
pathway; conversely, mTORC1 signalling down-regulates genes
involved in nutrient breakdown and energy production [196,198].
At the molecular level, how mTORC1 signalling controls
gene expression remains poorly understood. Signalling via
the mTORC1–S6K1 axis promotes ribosome biogenesis by
phosphorylating the rDNA (ribosomal DNA) transcription factor
UBF (upstream binding factor) (either directly or indirectly),
leading to the activation of 45S ribosomal gene transcription
[199]. These data further underscore the dedicated role of
mTORC1 in enhancing protein biosynthetic capacity. mTORC1
promotes the expression of genes involved in mitochondrial
oxidative function by interacting with the transcription factor
YY1 (Yin-Yang 1) [197]. mTORC1 binding to YY1 promotes
interaction of YY1 with the co-activator PGC-1α (peroxisome-
proliferator-activated receptor γ coactivator-1α). More recently,
mTORC1 signalling was shown to modulate gene expression
via the transcription factors HIF1α, SREBP1 and SREBP2
[176,198]. Signalling via the mTORC1–4EBP1 axis enhances the
translation of HIF1α, which promotes expression of glycolytic
genes; signalling via the mTORC1–S6K1 axis promotes the
proteolytic processing of SREBP from an inactive precursor
to an active transcription factor that rapidly shuttles into the
nucleus, which promotes expression of genes in the oxidative
pentose phosphate pathway as well as those involved in lipid
and sterol biosynthesis [198]. Limited data suggest that S6K1
directly phosphorylates transcription factors to modulate their
function. Serum stimulation of S6K1 was shown to phosphorylate
and transactivate CREMτ (cAMP-response-element modulator
τ ) (Ser117) [200]. Additionally, S6K1 (and RSK) phosphorylates
oestrogen receptor α (Ser167), leading to its transcriptional
activation, which may contribute to breast cancer progression
(Figure 3) [201].

Other functions

The mTORC1–S6K1 axis has been linked to a variety of
other cellular processes, including GSK3 regulation, adipocyte
differentiation, cell survival, cell motility, DNA damage response
and synaptic plasticity (Figure 3). In the absence of Tsc1/Tsc2
function, which results in high S6K1 activity but low Akt activity
owing to feedback inhibition of PI3K/Akt, S6K1 (rather than
Akt) phosphorylates and inactivates the multi-functional kinase
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GSK3 [202]. mTORC1 signalling promotes discrete steps in
adipocyte differentiation. The mTORC1–S6K1 axis enhances
commitment of stem cells to early adipocyte progenitors [203],
whereas mTORC1 signalling independent of S6K1 controls
terminal adipocyte differentiation [204,205]. These steps in
adipogenesis correlate with mTORC1-mediated increases in the
expression of several transcription factors, further underscoring
the role of mTORC1 signalling in control of gene expression.
The mTORC1–S6K1 axis promotes cell survival via S6K1-
mediated phosphorylation and inhibition of BAD (Ser136), a
pro-apoptotic BH3-only member of the Bcl-2 family [206].
Signalling through mTORC1 promotes cell motility via both
the S6K1 and 4EBP1 axes [77]. The mTORC–S6K1 axis has
also been reported to participate in the DNA damage response.
Upon genotoxic stress, the p38α MAPK pathway activates
mTORC1–S6K1, whereby S6K1 binds to and phosphorylates
Mdm2 (murine double minute 2) (Ser163), blocking its nuclear
import and ability to ubiquitinate the tumour suppressor protein
p53 [207]. Thus p53 levels increase, resulting in cell cycle
arrest or apoptosis. Lastly, the mTORC1–S6K1 axis participates
in protein synthesis-dependent synaptic plasticity. In response
to type I mGluR (metabotropic glutamate receptor) stimulation
of mouse hippocampus, S6K1 phosphorylates FMRP (fragile
X mental retardation protein), a dendritic RNA-binding protein
that functions in translational repression and synaptic plasticity
[208,209]. Thus S6K1-mediated phosphorylation of FMRP may
modulate learning and memory.

THE mTORC1–S6K1 SIGNALLING AXIS IN PHYSIOLOGY AND
DISEASE

Abundant evidence indicates important roles for mTORC1
in physiology and myriad disease states, including diabetes,
obesity, cancer and benign tumour syndromes, organ hypertrophy,
neurological disorders (e.g. autism spectrum disorders and
Alzheimer’s disease) and aging-related pathology [2,22,209].
These pathological responses probably stem from cellular
effects of mTORC1 on protein and lipid synthesis, cell
growth, cell proliferation and cellular metabolism. However,
our understanding of the mTORC1 effectors that mediate these
cellular and physiological responses remains in its infancy. In the
present review, we will focus specifically on identified roles for
the mTORC1–S6K1 axis in physiology and disease.

Diabetes: glucose homoeostasis, insulin sensitivity and adipocyte
metabolism

Deletion of S6K1 in the mouse results in a number of
physiological alterations. In addition to having a smaller
body and organ size, S6K1− / − mice present with hypoinsulin-
aemia and glucose intolerance as a result of insufficient insulin
production by pancreatic β-cells, which results, at least in
part, from a reduction in β-cell size [174]. Strikingly, even
though these mice are hypoinsulinaemic, they remain sensitive
to insulin due to the elimination of the mTORC1–S6K1-mediated
negative-feedback loop and inhibitory IRS-1 phosphorylation
(described above). Consistently, the livers of wild-type and
obese db/db (leptin receptor deficient) but not S6K1− / − mice
fed on a high-fat diet show increased IRS-1 phosphorylation
(Ser1101) and reduced PI3K/Akt signalling [186]. These results
demonstrate that up-regulated signalling along the mTORC1–
S6K1 axis contributes to insulin resistance in vivo. The phenotype
of rpS6P − / − knockin mice mimics that of S6K1− / − mice, as
they display hypoinsulinaemia with impaired glucose tolerance
owing to reduced insulin production by β-cells of reduced size

[160]. As these phenotypes reflect the aggregate response of all
tissues, conditional knockout of S6K1 in specific tissues (adipose,
muscle and liver) will be required to evaluate more precisely
the roles of the mTORC1–S6K1 axis in peripheral control of
glucose homoeostasis and metabolism and how its dysregulation
contributes to diabetes [22].

The mTORC1–S6K1 axis also controls adipocyte metabolism.
S6K1− / − mice possess fewer adipocytes owing to decreased
differentiation of stem cells into adipogenic precursors (described
above) [203]. Additionally, the mice store less fat than wild-type
mice, owing to enhanced triacylglycerol (triglyceride) lipolysis,
enhanced mitochondrial biogenesis and fatty acid β-oxidation,
due to elevated AMPK activity and enhanced metabolic rate,
as indicated by increased O2 consumption [210,211]. Similarly,
mTORC1 inhibition in cultured adipocytes via rapamycin or
raptor knockdown enhances lipolysis, suppresses lipogenesis
and thus reduces fat storage [212,213]. These phenotypes
are consistent with the general anabolic role of mTORC1 in
metabolism.

Obesity: body mass and energy balance

Whole-body S6K1− / − mice display resistance to age- and
diet-induced obesity, revealing a role for the mTORC1–S6K1
axis in control of body mass and energy balance [185].
Modulation of S6K1 activity, specifically in the mediobasal
hypothalamus of rat brain, suggests a role for S6K1 in central
control of feeding and metabolic responses that maintain energy
balance [214]. Injection of adenoviruses expressing constitutively
active S6K1 directly into the rat mediobasal hypothalamus
decreases food intake and body weight; conversely, injection
of adenoviruses expressing dominant-negative S6K1 produces
opposite phenotypes [214]. These phenotypes mimic those
resulting from mTORC1 activation effected by injection of
leptin, an anorexigenic adipocyte-derived hormone, or leucine, an
mTORC1-activating signal, into rat hypothalamus [215]. Thus,
by these approaches, leptin signalling via mTORC1–S6K1 in
the hypothalamus appears to modulate energy balance towards a
leaner phenotype. It is important to note that the leaner phenotype
produced by increased S6K1 signalling in hypothalamus opposes
that produced by whole-body S6K1 knockout, a phenotype that
indicates a role for S6K1 in promotion of body mass and adiposity.
As many different types of neurons, each with specialized
functions, compose the hypothalamus, the regulation and function
of mTORC1–S6K1 signalling is probably unique within each
type of neuron. Therefore the available data only assess aggregate
responses [216]. Indeed, activation of the mTORC1 pathway
by inactivation of Tsc1 in one class of neurons (anorexigenic
pro-opiomelanocortin neurons) actually increases food intake
and body weight, opposite to the results described above [217].
Clearly, more research will be required to unravel the complexities
of energy balance control by the mTORC1–S6K1 axis.

Cancer: cell number control

Cancer results from aberrant control of fundamental cellular
processes that ultimately control cell number, including cell
proliferation, cell growth, cell survival and cell metabolism.
The mTORC1 and mTORC2 pathways demonstrate frequent
up-regulation in cancer, particularly under cellular conditions
of heightened PI3K signalling due to oncogenic activation of
PI3K or mutagenic inactivation of the lipid phosphatase PTEN
(phosphatase and tensin homologue deleted on chromosome 10)
[2,6,7]. As a result, mTOR signalling networks have emerged
as attractive targets for novel therapeutic strategies to treat
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cancer and various tumour syndromes (e.g. TSC). Indeed, the
rapalogues CCI-779 (also known as temsirolimus) and RAD0001
(everolimus) were FDA-approved in 2007 and 2009 respectively
to treat renal cell carcinoma. Overall, however, rapalogues have
shown a rather disappointing efficacy in anti-cancer clinical trials,
probably due to suppression of the mTORC1-mediated negative-
feedback loop, which produces the undesired effect of increasing
PI3K signalling. Additionally, it has recently become clear that
rapamycin and rapalogues do not fully inhibit phosphorylation
of all mTORC1 substrates (e.g. 4EBPs) [218]. Thus there exist
rapamycin-sensitive (i.e. S6K) and rapamycin-insensitive (i.e.
4EBP1) mTORC1 substrates, which may explain in part the poor
clinical efficacy of rapalogues as anti-cancer drugs. The recent
development of ATP-competitive mTOR catalytic inhibitors (i.e.
Torin1, PP242, Ku-0063794 and WAY600) that inhibit both
mTORC1 and mTORC2 offer renewed optimism in clinical
oncology [7].

To date, evidence for S6K1 and/or S6K2 signalling in mTOR-
mediated tumorigenesis remains limited. S6K1 frequently shows
overexpression in certain cancers, particularly breast cancer, due
to 17q23 amplification of the RPS6KB1 gene, and this phenotype
correlates with poor prognosis [219]. More recent work suggests
that S6K1 indeed contributes to tumorigenesis, although only in
tissues bearing low S6K2 expression [220]. At the mRNA level,
S6K1 and S6K2 show ubiquitous expression to comparable extents
across diverse mouse tissues [220]. Although the S6K1 protein
shows ubiquitous expression as well, S6K2 protein expression
varies greatly in a tissue-specific manner, indicating that post-
transcriptional mechanisms fine-tune the protein abundance of
S6K2. Low S6K2 expression correlates with the ability of S6K1
deletion to impair tumorigenesis driven by heterozygous PTEN
inactivation; in tissues bearing high S6K2 expression, deletion
of S6K1 fails to blunt tumorigenesis. These results reveal a role
for the mTORC1–S6K1 axis in tumorigenesis driven by PTEN
inactivation, at least in tissues in which S6K2 fails to compensate
for S6K1 function.

Hypertrophy: organ growth

In addition to promoting physiological cell and organ growth,
mTORC1 signalling promotes pathological responses that induce
organ hypertrophy, which describes increased organ mass and
size primarily due to cellular hypertrophy rather than hyperplasia.
In general, chronic organ hypertrophy correlates with impaired
organ function and ultimately with patient morbidity and
mortality. Indeed, mTORC1 inhibition with rapamycin in mice
reduces load-induced cardiac hypertrophy and compensatory
renal hypertrophy that occurs upon removal of a kidney (known
as ‘uninephrectomy’) [221,222]. Renal hypertrophy represents
an early event in the development of diabetic nephropathy, the
leading cause of renal failure in the U.S.A. S6K1-knockout
mice show resistance to uninephrectomy- and diabetes-induced
renal hypertrophy, thus indicating that the mTORC1–S6K1 axis
contributes to renal hypertrophy [223]. However, knockout of
S6K1 as well as single S6K2 or double S6K1/S6K2 knockout
fails to confer resistance to cardiac hypertrophy induced by
physiological (exercise), pathological (aortic banding) or elevated
PI3K signalling [224]. These results suggest that the mTORC1–
S6K1 axis is not required for cardiac hypertrophy. S6K1 may be
sufficient to promote cardiac hypertrophy, however, as transgenic
overexpression of S6K1 in the heart induces modest hypertrophy
[224]. Additionally, S6K1 contributes to airway smooth muscle
hypertrophy, a structural change associated with asthma and
airway hyper-responsiveness [173] and contributes to skeletal

muscle hypertrophy, as S6K1− / − mice display skeletal muscle
atrophy [76].

Learning and memory

Long-lasting synaptic plasticity and the formation of enduring
memories requires protein synthesis [209]. Recent work suggests
roles for mTORC1 in memory and learning. Although S6K1
or S6K2 knockout in mice has no effect on protein synthesis-
dependent L-LTP [late-phase LTP (long-term potentiation)],
S6K1, but not S6K2, knockout mice display impaired early-phase
LTP and a diverse array of behavioural phenotypes associated
with deficits in cognitive processing [225]. S6K2-knockout mice,
however, indeed demonstrate memory impairment [225]. These
findings suggest that the S6Ks, at least individually, are not
required for the de novo protein synthesis that is important for
enduring LTP. The mTORC1–S6K1 axis, however, is required
for early phases of plasticity required for synaptic modifications
and ultimately memory.

Aging

Caloric restriction and genetic inactivation of components within
the insulin/IGF-1 signal transduction pathway increase lifespan
and decrease age-related pathology in diverse model organisms
[226]. Strikingly, genetic inactivation of TOR in yeast, worms
and flies, which is thought to mimic nutrient restriction, increases
longevity. Current thought suggests that TOR signalling promotes
aging via mechanisms that may include increased generation
of metabolic by-products and thus increased oxidative stress
as well as impaired ability to maintain stem cell function
[226]. Additionally, mTOR-mediated suppression of autophagy
[via mTOR-mediated phosphorylation of ULK1/2 (unc-51-like
kinase 1/2) and Atg13, in part] may promote aging due to
a decreased ability to manage cellular damage [227–229].
Autophagy represents a cellular process whereby misfolded
proteins and/or damaged organelles become sequestered within
double-membrane vesicles for degradation in lysosomes. Indeed,
many lifespan-extending strategies correlate with enhanced
autophagy [228]. A role for mTORC1 in mammalian aging has
been demonstrated with the finding that rapamycin-fed mice
live longer than controls [230]. Moreover, knockout of S6K1
in mice or knockout of the single S6K gene in C. elegans (rsks-
1) extends lifespan [231]. Strikingly, S6K1-knockout mice show
decreased aging-related pathology, including bone, immune and
motor dysfunction, and altered gene expression in a manner that
resembles caloric restriction [231]. These results demonstrate a
role for the mTORC1–S6K1 axis in longevity and aging-related
pathology.

CONCLUDING COMMENTS

We have learned a great deal over the past 20 years regarding
the cellular regulation and function of S6Ks within mTOR
signalling networks; however, many questions remain. Although
mTOR provides a critical activating input for S6Ks, other poorly
understood phosphorylation events contribute to S6K regulation.
It will be important in the future to identify the kinases for
C-terminal S6K phosphorylation as well as the kinase(s)
for the critical turn-motif site (Ser371). The role that subcellular
localization plays in the regulation and function of S6Ks needs
to be better defined. Undiscovered S6K substrates probably
exist. Identification of shared and unique substrates of S6K1
and S6K2 represents an important area for future research that

c© The Authors Journal compilation c© 2012 Biochemical Society



16 B. Magnuson, B. Ekim and D. C. Fingar

will provide improved understanding of the similarities and
differences between S6K1 and S6K2 function. The development
of a novel pharmacological inhibitor specific for S6K1,
PF-4708671, will greatly facilitate the discovery of S6K1-specific
cellular functions, similar to the use of rapamycin as a tool to
identify mTORC1-controlled functions [232]. Our understanding
of the role of the mTORC1–S6K1 axis in organismal physiology
and pathophysiology remains in its infancy. Thus future research
effort focused on elucidating the tissue-specific functions of
S6K1 and S6K2 should prove informative and may identify
diseases amenable to treatment with mTORC1- or S6K1-specific
inhibitors. Lastly, the limited set of known mTOR substrates
(i.e. S6K, 4EBP1, ULK1/2, Atg13, raptor, Akt, SGK, PKC and
Grb10) and S6K1 substrates (Figure 3) probably does not account
for the myriad cellular and physiological functions controlled
by mTOR and S6K1 [1,3,195,194,233]. Thus the identification
of the complete set of direct mTOR and S6K1/2 substrates
remains an important area for future research. Recent MS-based
phosphoproteomic screens in cultured cells identified a plethora
of novel as well as known phosphorylation targets controlled
directly by mTOR or indirectly via S6K1 or other downstream
kinases [194,195]. Indeed, several of the reported S6K1 substrates
described in the present review (Figure 3) were identified in
these studies, including eIF4B, PDCD4, eEF2K, rpS6, Mdm2,
BAD, GSK3β, rictor, IRS and mTOR [194,195]. Hits from these
screens probably represent novel mTOR and S6K substrates.
The identification of mTOR and S6K targets will enable basic
researchers to better define how mTOR controls physiology in
S6K-dependent and -independent fashions.
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