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Vitamin D is frequently prescribed by rheumatologists to prevent
and treat osteoporosis. Several observations have shown that
vitamin D inhibits proinflammatory processes by suppressing
the enhanced activity of immune cells that take part in the
autoimmune reaction. Moreover, recent evidence strongly
suggests that vitamin D supplementation may be therapeutically
beneficial, particularly for Th1-mediated autoimmune
disorders. Some reports imply that vitamin D may even be
preventive in certain disorders such as multiple sclerosis and
diabetes type 1. It seems that vitamin D has crossed the
boundaries of calcium metabolism and has become a
significant factor in a number of physiological functions,
specifically as a biological inhibitor of inflammatory
hyperactivity.
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A
utoimmune diseases are the third leading
cause of morbidity and mortality in the
industrialised world, surpassed only by

cancer and heart disease.1 Despite this relatively
high prevalence rate, the aetiology and pathogen-
esis of most autoimmune disorders remain obscure
and a number of factors have been implicated in
their pathogenesis. One of the most recent agents
found to be associated with autoimmunity is
vitamin D.

Vitamin D has multiple immunosuppressant
properties. Supplementation of vitamin D was
shown to be therapeutically effective in various
animal models such as autoimmune encephalo-
myelitis,2 3 collagen-induced arthritis,4 type 1
diabetes mellitus,5 inflammatory bowel disease,6

autoimmune thyroiditis7 and systemic lupus
erythematosus (SLE),8 and in some models of
SLE it prevented disease development. A recent
study showed that high circulating levels of
vitamin D were associated with a lower risk of
future multiple sclerosis.9

PHYSIOLOGY OF VITAMIN D
The classic prominent function of vitamin D is
regulation of calcium homeostasis, which is
primarily maintained via bone formation and
resorption.10–12 Homeostasis is maintained in addi-
tion through the interaction of vitamin D with the
parathyroid, kidney and intestinal tissues.13

Vitamin D can be ingested orally or can be
formed endogenously in cutaneous tissue follow-
ing exposure to ultraviolent B light.14 Vitamin D3

from both sources is metabolised in the liver to 25-
hydroxyvitamin D (25(OH)D) which is the major

circulating form of vitamin D. This form of the
vitamin is the one measured by clinicians to
determine vitamin D levels in patients. However,
25(OH)D is biologically inert and requires addi-
tional hydroxylation within the kidney to form the
biologically active derivative of vitamin D, 1,25-
dihydroxyvitamin D (1,25(OH)2D3). 1,25(OH)2D3

is a lipid-soluble hormone that interacts with its
vitamin D receptors (VDRs) in the small intestine.
Its action leads to enhanced expression of the
epithelial calcium channel, the calcium-binding
protein and various other proteins which sustain
the transport of calcium from the intestinal lumen
into the circulation. 1,25(OH)2D3 also interacts
with VDRs on osteoblasts, which stimulate the
expression of the receptor activator of nuclear
factor kB (NFkB) ligand (RANKL). This results in
a cascading effect that facilitates the maturation of
osteoclast precursors to osteoclasts which, in turn,
mobilise calcium stores from the skeleton to
maintain calcium homeostasis.15

The 25(OH)D3-1-a-hydroxylase that converts
25(OH)D to 1,25(OH)2D3 in the kidney is also
expressed in activated macrophages and dendritic
cells.16 17 However, in contrast to the renal cells, in
antigen presenting cells the enzyme is non-
responsive to suppression by either parathyroid
hormone or 1,25(OH)2D3. Instead, it is inducible in
the cells by a number of factors such as interferon
c (IFNc) and is downregulated as the dendritic cell
matures.18

Vitamin D deficiency is typically found in
countries where there is no (or hardly any)
ultraviolet light during the winter months and
people must rely on the diet as their main source of
the vitamin.19 The optimal level for 25(OH)D for
bone health begins at 75 nmol/l (30 ng/ml), with
the best concentrations at 90–100 nmol/l (36–
40 ng/ml),20–22 but the vitamin D level required to
maintain optimal immune system homeostasis has
not yet been established.

VITAMIN D AND THE IMMUNE SYSTEM
Vitamin D interacts with the immune system. It
takes part in the regulation and differentiation of
the cells of the immune system directly and
indirectly. Early reports linking vitamin D meta-
bolism to the prevalence of autoimmune diseases
were largely anecdotal and circumstantial. For
instance, associations were detected between the

Abbreviations: 1,25(OH)2D3, 1,25-dihydroxyvitamin D3;
25(OH)D, 25-hydroxyvitamin D; GM-CSF, granulocyte-
macrophage colony stimulating factor; IFNc, interferon c; IL,
interleukin; NFkB, nuclear factor kB; SLE, systemic lupus
erythematosus; VDR, vitamin D receptor
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relatively high prevalence of multiple sclerosis and inflamma-
tory bowel disease in northern regions and the lower exposure
to sunlight in these geographical locations.23 24 Current data link
vitamin D deficiency to many autoimmune diseases including
type 1 diabetes mellitus, multiple sclerosis, inflammatory bowel
disease, SLE and rheumatoid arthritis.25–27

LYMPHOCYTE CELLS
Vitamin D has direct effects on T and B cells and shapes their
responses to activation. Quiescent CD4 T cells express VDRs,
but only at low concentrations, which increases fivefold after
activation.28

The effect of 1,25(OH)2D3 on the acquired antigen-specific
immune response is inhibition of T lymphocyte prolifera-
tion,29 30 particularly of the Th1 arm.31 The addition of
1,25(OH)2D3 to CD4 T cells inhibits Th1 cell proliferation and
cytokine production.32 The addition of 1,25(OH)2D3 leads to
decreased secretion of interleukin (IL)-2 and IFNc by CD4 T
cells and promotes IL-5 and IL-10 production, which further
tilts the T cell response towards Th2 dominance.33

The role of 1,25(OH)2D3 in the regulation of IL-4 is
controversial. IL-4 is a Th2-associated cytokine whose produc-
tion has been shown to be upregulated in vivo by 1,25(OH)2D3

treatment. However, other observations have shown inhibition
of both Th1 and Th2 cell cytokine production, including
inhibition of IL-4.34 35 Addition of 1a,25(OH)2D3 was also
shown to inhibit the expression of the IL-6 protein, an
important factor that stimulates Th17 cells. Th17 cells are a
critical component of the autoimmune reaction.36 37

In B cells, vitamin D has been shown to inhibit antibody
secretion and autoantibody production.38

ANTIGEN PRESENTING CELLS
Dendritic cells
Dendritic cells play a central role in regulating immune
activation and responses to self. Dendritic cell maturation is
central to the outcome of antigen presentation to T cells. In
contrast to the antiproliferative effects of 1,25(OH)2D3 on some
cell types,39 generation of dendritic cells from bone marrow is
not impaired by 1,25(OH)2D3, although an attenuated progres-
sion of maturation occurs.40

In vitro, 1,25(OH)2D3 inhibits the differentiation of mono-
cytes into dendritic cells and impedes the stimulatory activity
that T cells exert on them.40–42 It has been shown that
1,25(OH)2D3 is one of the most powerful blockers of dendritic
cell differentiation and of IL-12 secretion. In vitro, 1,25(OH)2D3

stimulates phagocytosis and killing of bacteria by macrophages
but suppresses the antigen-presenting capacity of these cells
and of dendritic cells.43 Inhibition of IL-12 is achieved through
the direct interaction of 1,25(OH)2D3 bound to the VDR (and
NFkB), which interferes with the NFkB-induced transcription
of IL-12.44

Other observations suggest that 1,25(OH)2D3 has additional
immunosuppressive effects on dendritic cells. In vitro, dendritic
cells treated with VDR agonists retain the monocyte marker
CD14, fail to upregulate CD1a, retain the ability to carry out
macropinocytosis and never express their full complement of
MHC and costimulatory molecules (such as CD40, CD80,
CD86). The outcome is a decrease in IL-12 and IFNc while IL-
10 and transforming growth factor b production is enhanced,
resulting in inhibition of T cell activation.45–48

Macrophages
Vitamin D has been found to promote the induction of
monocytic differentiation to macrophages and to modulate
macrophage responses, preventing them from releasing
inflammatory cytokines and chemokines.49 Vitamin D defi-
ciency impairs macrophage ability to mature, to produce

macrophage-specific surface antigens, to produce the lysosomal
enzyme acid phosphatase, and to secrete hydrogen peroxide
which is essential to their antimicrobial function.50 The addition
of 1,25(OH)2D3 increased the expression of macrophage-
specific surface antigens and the lysosomal enzyme acid
phosphatase while stimulating their ‘‘oxidative burst’’ func-
tion.51–53

Prostaglandin E2, a suppressive cytokine, is stimulated by
1,25(OH)2D3 while granulocyte-macrophage colony stimulating
factor (GM-CSF) is suppressed. Suppression of GM-CSF is
achieved via binding of ligand-bound monomers of the VDR to
a DNA element in the promotor region of the gene encoding
GM-CSF.54 Moreover, 1,25(OH)2D3 can decrease the antigen-
presenting activity of macrophages to lymphocytes by reducing
the expression of MHC II molecules on the cell surface.23 30 55

Some immune cells, in particular activated macrophages and
dendritic cells, contain the enzyme 1a-hydroxylase which is
necessary for the final activating step of the conversion of
vitamin D3 to the metabolically active molecule. These cells
therefore hold the capacity to synthesise and secrete
1,25(OH)2D3. The 1a-hydroxylase present in immune cells is
identical to the renal enzyme, but regulation of its expression
and activity is different. Whereas the renal enzyme is
principally under the control of calcaemic and bone signals,
the macrophage enzyme is primarily regulated by immune
signals such as IFNc.56

The immunomodulatory effects of vitamin D derivatives in
the various arms of the immune system are shown in fig 1.

EVIDENCE FOR ROLE OF VITAMIN D RECEPTORS IN
AUTOIMMUNITY
After activation by the active vitamin D metabolite, the VDR, a
member of the steroid/thyroid/retinoid receptor gene super-
family of transcription factors, regulates the expression of genes
in a variety of vitamin D responsive tissues. This receptor plays
a role in the regulation of calcium homeostasis and also exerts
immunomodulatory effects.

VDRs are present in a number of cells of the immune system.
They can be detected in over 30 different tissues including
circulating monocytes, dendritic cells and activated T cells,39

and are found in significant levels in the T lymphocyte and
macrophage populations. However, the highest concentration is
in immature immune cells within the thymus and in mature
CD8 T lymphocytes, regardless of activation status.57

Experiments with VDR knockout mice have concluded that
VDRs are needed to enable 1,25(OH)2D3 to induce the
differentiation of bone marrow progenitors into monocytes/
macrophages, but monocyte/macrophage differentiation can
occur in the absence of VDR. Expression of VDR was shown to
be important for the generation of a Th1-type immune response
by spleen cells.58

Allelic variations within the VDR gene have been implicated
in mediating susceptibility to endocrine autoimmune dis-
ease.59–61 The genetic differences in the VDR might be one of
the many genes that predispose individuals to autoimmunity.
Unfortunately, no functional phenotype is associated with
specific VDR polymorphisms.62

Several studies have reported an association between type 1
diabetes mellitus and one of four single nucleotide polymorph-
isms. However, a large meta-analysis combining data from 19
reports found little evidence for a possible genetic associa-
tion.63 64

Vitamin D is not the only factor affected by exposure to
sunlight that has the capacity to modify immune function.
Recent studies have shown that melatonin can also act on non-
specific, humoral and cellular immune responses.65 66
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VITAMIN D DEFICIENCY AND AUTOIMMUNE
DISEASES
Inflammatory bowel disease
Inflammatory bowel disease has been found to be more
prevalent in areas with decreased sunlight exposure. The
disease is more frequent in northern climates such as North
America and Northern Europe.67–69 Serum levels of 25(OH)D
have been found to be low in patients with inflammatory bowel
disease.70

It is unclear why vitamin D deficiency occurs more frequently
in inflammatory bowel disease, but it may be due to the
combined effects of, for example, low vitamin D intake,
malabsorption of many nutrients including vitamin D and
decreased outdoor activities with decreased sunlight exposure.

Newly diagnosed patients have lower 25(OH)D levels than
controls.71 Experimental inflammatory bowel disease has also
been shown to be accelerated by vitamin D deficiency and
suppressed by 1,25(OH)2D3 treatment.27 72

In animal studies, IL-10 knockout mice develop a sponta-
neous inflammatory bowel disease-like condition. IL-10 knock-
out mice developed diarrhoea and cachexia rapidly and had
high mortality rates when they were made deficient in vitamin
D. Feeding vitamin D to IL-10 knockout mice prevented these
findings and significantly improved their symptoms.73

Experimental treatment with a low calcaemic vitamin D
analogue has been shown to display a prophylactic as well as
therapeutic profile in Th1-like experimental colitis in mice.74

Multiple sclerosis
The prevalence of multiple sclerosis shows a striking geogra-
phical variance. It rises in parallel with increasing latitude in
both hemispheres, from a low of 1–2 cases per 105 people near
the equator to a high of .200 cases per 105 people at latitudes
higher than 50 .̊75 76 A study set up to investigate bone
metabolism in patients with multiple sclerosis revealed a
prevalence of low serum levels of 25(OH)D (,50 nmol/l) in
77% of patients.77

Several recent studies have underlined the important role of
vitamin D not only in decreasing the rate of relapses in patients

with multiple sclerosis but also in preventing the occurrence of
the disease. Munger et al9 studied circulating vitamin D levels of
more than 7 million active-duty US military personnel taken
from 1985 and compared the incidence of multiple sclerosis.
The results showed that, among white subjects, the risk of
multiple sclerosis significantly decreased with increasing levels
of 25(OH)D. In contrast, among black and Hispanic popula-
tions, who had lower 25(OH)D levels, no significant associa-
tions were found between vitamin D levels and the risk of
multiple sclerosis. The authors conclude that supplementation
of vitamin D in a high-risk population is safe and beneficial.
Although levels of .25 nmol/l have been considered normal
and almost everyone in the study had measurements above that
level, the optimal serum 25(OH)D concentration should be 90–
100 nmol/l.

Another study checked the vitamin D intake in more than
187 000 women from two separate cohorts: the Nurses’ Health
Study (92 253 women followed from 1980 to 2000) and the
Nurses’ Health Study II (95 310 women followed from 1991 to
2001) and found a 40% reduction in the risk of multiple
sclerosis among women who used supplemental vitamin D,
primarily in the form of multivitamins, compared with women
who did not use these supplements.78 Another intervention
study in patients with multiple sclerosis showed that daily
supplementation with calcium 16 mg/kg, magnesium 10 mg/kg
and vitamin D 125 mg/day for 1–2 years decreased the relapse
rate compared with the expected exacerbations.79

In animal experiments, evidence that vitamin D may be a
natural inhibitor of multiple sclerosis comes from research done
on the experimental autoimmune encephalitis mouse model
which serves as a model for multiple sclerosis. Immunisation of
mice with spinal cord homogenates containing myelin basic
protein or with pure myelin basic protein induces a progressive
paralytic autoimmune disease that resembles multiple sclerosis.
When vitamin D was given shortly before induction of
experimental autoimmune encephalitis, the disease was pre-
vented. Vitamin D also had a therapeutic effect in mice with
experimental autoimmune encephalitis and reversed their
disease signs.80

Figure 1 Immunomodulatory effects of
vitamin D derivatives in the various immune
arms: inflammatory dendritic cells (DC), T
cells, B cells, plasma cells, macrophages,
antigen presenting cells (APC). IL, interleukin;
PG, prostaglandin; Ig, immunoglobulin; GM-
CSF, granulocyte-macrophage colony
stimulating factor; MHC, major histo-
compatibility complex; IFNc, interferon c;
TGFb, transforming growth factor b.
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Systemic lupus erythematosus (SLE)
In the USA, African-Americans have a threefold increased
incidence of SLE which develops at an earlier age with
increased morbidity and mortality than in Caucasians.81 This
significantly higher prevalence of SLE in the black population
cannot be attributed merely to genetics, since the disease is not
common among black people who live in West Africa. The
difference can therefore probably be attributed to the reduced
exposure to sunlight and to the deceased penetration of
ultraviolet through pigmented skin resulting in low serum
concentrations of vitamin D in the black population living in
Western countries. This hypothesis has been reinforced in other
studies; Kamen et al27 observed significantly lower serum
25(OH)D levels in patients recently diagnosed with SLE than
in controls and a high overall prevalence of vitamin D
deficiency. Similar results were also obtained in patients with
SLE who had a longer disease course.82–84 However, Huisman et
al83 failed to repeat these results. In a cross-sectional study of
25(OH)D, 1,25(OH)2D3 and parathyroid levels in 25 Caucasian
patients with SLE and 25 women with fibromyalgia, no
significant differences were noted between the two groups.
Half of the patients were found to be deficient in vitamin D.

VDR gene BsmI polymorphisms have been used as genetic
markers to determine their association with SLE. A Japanese
study of 58 patients with SLE found that the BB genotype
might trigger the development of SLE and that the bb genotype
was associated with lupus nephritis.65 A Taiwanese study of 47
patients with SLE also found an increased distribution of the
VDR BB genotype in SLE, but indicated no association between
the frequency of VDR allelic variations and clinical manifesta-
tions or laboratory profiles.85 86

There are no published studies of the use of vitamin D for
treating SLE. Abe et al87 reported that supplementation with
vitamin D3 to the MRL/lpr spontaneous developing lupus
mouse model significantly improved longevity and reduced
proteinuria.

Diabetes mellitus type I
Several epidemiological studies have reported that dietary
vitamin D supplementation during infancy and childhood
may reduce the risk of developing type 1 diabetes. An important
paper in this regard examines the risk ratio for developing type
1 diabetes mellitus with respect to vitamin D supplements in
infancy in Finland. A 30 year follow-up study found a marked
reduction in the prevalence of type 1 diabetes (relative risk
0.12) in infants who received daily vitamin D supplementation
(50 mg/day) in the 1960s. On the other hand, children
suspected of having rickets during the first year of life had a
threefold increased prevalence of type 1 diabetes compared
with normal infants.88 89 Fronczak et al90 reported that the
presence of islet autoantibodies in offspring was inversely
correlated with maternal dietary vitamin D intake during
pregnancy.

Similar to other autoimmune models, 1,25(OH)2D3 success-
fully prevented autoimmune insulinitis and diabetes in the
non-obese diabetic mouse model.5 91

Rheumatoid arthritis
Low 1,25(OH)2D3 levels have been shown to be associated with
higher rheumatoid arthritis disease activity in cross-sectional
studies. Epidemiological data indicate that .60% of patients
with rheumatoid arthritis have 25(OH)D levels ,50 nmol/l,92

and 16% have levels in the range of vitamin D deficiency
(,12.5 nmol/l). However, the finding of a positive correlation
between 1,25(OH)2D3 and alkaline phosphatase indicates that
this may partly reflect the fact that people with higher disease
activity have increased bone resorption.93

Intervention trials with a dosage of 1 mg 1a-vitamin D were
not associated with an improved outcome.94 However, admin-
istration of higher amounts of 1a-vitamin D or other forms of
vitamin D was associated with decreased pain sensation and a
significant reduction in C-reactive protein levels.95

VITAMIN D AND HYPERSENSITIVITY
Owing to the immunomodulatory effect of vitamin D, which
suppresses Th1 cell activity, several studies have examined
whether vitamin D supplementation in newborn infants is
associated with increased rates of atopic reactions commonly
encountered in western countries.96 In a cohort of 8285 children
aged 3 years, Milner et al97 found a 1.6-fold increased risk for
food allergy by multivitamin drops while, in 12 058 live births,
Hyppönen et al98 showed a similar 1.7-fold risk of atopy in
babies given daily supplements of vitamin D. In animal
experiments, asthma-induced VDR knockout mice failed to
develop airway inflammation, eosinophilia or airway hyper-
responsiveness despite high IgE concentrations and raised Th2
cytokine levels.99

CONCLUSIONS
The common denominator that rises from these studies is that
vitamin D affects the immune system at many levels and by a
number of mechanisms. It takes part in the genetic regulation
of cytokine production, VDR expression and affects important
biological processes by which these cells interact. On the whole,
vitamin D confers an immunosuppressive effect. Vitamin D has
been shown to provide clinically beneficial effects in animal
models, and initial observations indicate that vitamin D
supplementation may be preventive in multiple sclerosis and
diabetes mellitus. These preliminary results are encouraging
and further clinical trials are needed to evaluate the potential
role of vitamin D in clinical practice.
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