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Summary. Transcranial magnetic stimulation allows a non-invasive and painless stimulation
of the human brain and cranial nerves. The method is in use since 1985. Transcranial magnetic
stimulation can use single stimuli, pairs of stimuli separated by different intervals (to the same or
to several brain areas), or trains of repetitive stimuli at various frequencies. Single stimuli give
rise to motor evoked potentials that have clinical use and serve diagnostic and prognostic purposes.
Repetitive transcranial magnetic stimulation can modify excitability of cerebral cortex. Repetitive
transcranial magnetic stimulation has opened a new field of investigation of the neural circuitry,

and is developing into a therapeutic tool.

This general review considers basic principles of transcranial magnetic stimulation, discusses
methodological aspects and techniques, and analyses their utility in clinical practice.

Introduction

In the early 1980s, P. A. Merton and H. B. Morton
showed that high voltage electrical stimulation over
the scalp was able to activate the motor cortex in man,
evoking twitch-like movements in the corresponding
muscles (1). This technique was used to investigate
the central motor pathways in normal subjects and in
patients with various neurological disorders. However,
transcranial electrical stimulation was uncomfortable
and even painful for patients. Therefore, this technique
was not ideal for routine clinical practice.

In 1985, A. T. Barker and colleagues introduced
the painless technique of transcranial magnetic stimu-
lation (TMS), which led to a new era of research in
motor control and cortical function (2). Since that time,
interest in TMS has steadily increased.

This article considers concepts of TMS, reviews
different techniques, including the new field of re-
petitive transcranial stimulation (rTMS), and analyzes
their present and potential use in clinical practice.

Motor effects of brain stimulation

When the human brain is stimulated transcranially,
a complex sequence of events ensues with excitatory
and inhibitory effects. These effects depend on the
stimulus intensity and on the excitability of the cor-

tex and spinal cord. Investigation of inhibitory and
excitatory neuronal circuits within the motor cortex
is made available.

The technical principle of TMS is to pass a brief
surge of current through a coil, which induces a rapidly
changing magnetic field. This magnetic field passes
into the surrounding medium, where it again induces
an electrical field. Applied over the human scalp it
excites cortical neurons (Fig. 1).

Using a circular coil with the coil current flowing
clockwise when viewed from above, the left hemis-
phere will be excited preferentially. Turning the coil
over so that current now flows anticlockwise, the right
hemisphere will be excited preferentially. With a fi-
gure-eight coil, the central linear segment should be
over the motor area. For small hand muscles the opti-
mal orientation of this coil has been determined as about
45° to the parasagittal plane with coil current flowing
postero-anteriorly (3, 4). Whereas, peripheral nerve
stimuli, when maximal, excite all motor axons and
evoke compound muscle action potentials (CMAPs)
with latencies and sizes that do not vary if stimulation
is repeated, transcranial stimuli evoke multiple des-
cending volleys in corticospinal neurons. The initial
volley — the direct (D) wave — is thought to arise from
excitation of the pyramidal cell. This D-wave is follo-
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Fig. 1. Scheme of a transcranial magnetic stimulation set-up

A magnetic stimulator, with use of a coil (circular) placed over the motor cortex, is triggered by an EMG
apparatus which also serves to record a motor evoked potential from a muscle (here from abductor digiti

minimi —

wed by a number of indirect (I) waves at 1.5 to 2 ms
intervals. I-waves possibly stem from transsynaptic
excitation of corticospinal cells by different sets of
intracortical neurons (5). Motor evoked potentials
(MEPs) vary in latency and size from one stimulus to
another. If the target muscle voluntarily contracts, “fa-
cilitation” ensues. The MEP of the contracting musc-
le has a shorter latency and larger amplitude. Thus,
with an appropriate position of the stimulating coil,
facilitation causes a focal response to the magnetic
stimulation that is rather diffuse over the scalp (6, 7).

Assessment of cortico-spinal tract conduction

Central motor conduction time

The conduction time from motor cortex to spinal
cord alpha-motoneurons is referred as the central mo-
tor conduction time (CMCT). It consists in the diffe-
rence between conduction time from cortex to muscle
and peripheral motor conduction time. Calculation of
the peripheral motor conduction time can use the F-
wave latency (8), electrical (9) or magnetic (10) sti-
mulation of the spinal nerve roots. It is recommended
to measure the CMCT while the target muscle cont-
racts at 5% to 20% of its maximum strength (11),
because the MEP size saturates for stronger contrac-
tions (12). Facilitation is better during phasic cont-
raction than during a steady isometric contraction. The

ADM).

CMCT to the active muscle is shorter by 2—3 ms than
to the resting muscle (12). The CMCT is also affected
by the position of the stimulating coil. The shortest
CMCT is being obtained when the coil is placed at
the optimal position for eliciting MEP in the target
muscle. Finally, the CMCT also depends on the direc-
tion of TMS induced current in the motor cortex.

Normative CMCT data in adults are available for
many muscles of the upper and lower limb, and for
cranial muscles (13). The main reasons for patholo-
gical CMCT lengthening are demyelination of the cor-
ticospinal fibers and degenerative or ischemic chan-
ges. CMCT measurements are of interest in central
demyelinating disorders (e.g. multiple sclerosis), ce-
rebral ischemic stroke, myelopathies and neurodege-
nerative diseases affecting the corticospinal tract (14—
17). In these disorders, CMCT may be useful in dis-
closing changes before clinical manifestation occurs.

Motor evoked potentials size

When TMS is applied to the motor cortex at ap-
propriate stimulation intensity, MEPs can be recorded
from muscles of the contralateral extremity (11, 18).
If the peripheral nervous system is normal, normal
amplitude of the MEP reflects the integrity of the cor-
ticospinal tract and also normal excitability of motor
cortex and alpha-motoneurons. Patients with dysfunc-
tion of any of the above may have MEPs of reduced
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size. A difficulty to estimate an abnormal reduction
of the size stems from the marked variability of the
size of MEPs observed in healthy people. This vari-
ability, due to dispersion of the alpha-motoneuron re-
sponse to the descending volley in the corticospinal
tract, leads to a broad range of normal values. This
problem has been solved by the “triple stimulation
technique” (see “Non-standard methods” below) (7).

Assessment of motor cortex excitability

Motor threshold

Motor threshold may be defined as the lowest in-
tensity required to elicit MEPs of more than 50 pV
amplitude in at least 50% of successive trials in res-
ting or activated target muscles (19). Measurement of
the threshold is used as a marker of cortico-spinal
excitability. A high motor threshold may indicate sig-
nificant damage of the corticospinal tract after cereb-
ral stroke or spinal cord lesion (14, 20, 21). The inabi-
lity to elicit MEP in an acute stroke patient predicts a
poor functional outcome (22). A low motor threshold
suggests increased corticospinal tract excitability; it
has been observed in different disorders such as in
idiopathic generalized epilepsy, obsessive-compulsive
disorder and in early amyotrophic lateral sclerosis
(ALS) (23). Patients with ALS show lower motor
threshold and increased excitability of hand motor area
at an early stage of their disease where hand muscle
function remains normal. When the disease progresses
and lower motor neuron (or mixed upper and lower)
signs appear in the hand muscles, the motor threshold
rises (24). Motor threshold is of limited use as a sin-
gle study in a patient due to large variability between
subjects, but longitudinal measurements are feasible.

Cortical silent period

When a subject is requested to maintain a muscle
contraction, TMS causes a suppression of the electro-
myographic activity after the MEP. This period of
electromyographic “silence” has been termed the si-
lent period (SP) (Fig. 2). It may have an interest in
the study of epilepsy, cerebral stroke, movement disor-
ders, ALS, migraine and tetanus (25-28).

The SP observed in ipsilateral muscles can be used
to measure transcallosal conduction (see “Non-stan-
dard methods” below) (25, 26).

Intracortical inhibition and intracortical

facilitation

Inhibitory and facilitatory interactions that appear
to take place within the cortex can be studied by com-
bining a subthreshold conditioning stimulus with a
suprathreshold test stimulus at different short inter-
stimulus intervals through the same TMS coil (29).
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Fig. 2. Cortical silent period

A — motor evoked potential at rest; B — a magnetic
stimulus performed over the contralateral motor cortex
stops the ongoing EMG voluntary activity (from ab-
ductor digiti minimi), giving rise to a “cortical silent
period”; C — a magnetic stimulus performed over the
ipsilateral motor cortex stops shortly the EMG volun-
tary activity, giving rise (via transcallosal pathways)
to an “ipsilateral cortical silent period”.

This paired-pulse technique requires a special set-up,
because a standard magnetic stimulator cannot dis-
charge more than once every 2 to 3 seconds. Intracor-
tical inhibition (ICI) is observed for interstimulus in-
tervals between 1 to 5 ms (29, 30), intracortical fa-
cilitation (ICF) for intervals between 7 to 20 ms (31,
32) (Fig. 3). ICI and ICF are controlled through the
GABA-a and N-methyl-D-aspartate (NMDA) recep-
tors. GABA-a agonist (benzodiazepine) and NMDA
antagonist (memantine) increase ICI and decrease ICF
(33). Furthermore, several neuromodulating drugs
with effects on the systems of dopamine, norepinephri-
ne, serotonin and acetylcholine affect ICI and ICF (31).

Paired-pulse techniques have not entered clinical
routine yet. Potential applications of these techniques
are broad. Several studies have been conducted in
epilepsy, cerebral stroke, movement disorders, ALS,
migraine (27, 32, 33). Most of these disorders show a
decrease in ICI and/or an increase in ICF. Therefore,
although sensitive for the detection of abnormalities
of motor cortex excitability, ICI and ICF changes are
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Fig. 3. Intracortical inhibition and facilitation with paired-pulse technique
A — conditioning stimulus (C) alone; B — test stimulus (T) alone gives rise to a motor evoked potential (MEP);
C — C+T with 3 ms interval gives rise to a MEP of smaller size than in B due to “intracortical inhibition”;
D — C+T with 20 ms interval gives rise to a MEP of larger amplitude due to a “intracortical facilitation”.

not specific. Furthermore, disorders without clear mo-
tor cortex pathology, such as schizophrenia or depres-
sion, have been found to be associated with changes in
TMS paired-pulse curves, hence raising further ques-
tions about the specificity of the findings (34-36).

Investigation of interhemispheric interaction

Paired-pulse stimulation technique can also refer
to the application of single stimuli to two different
brain regions. A first conditioning stimulus is given
to a motor cortex area and after a short interval a se-
cond, test stimulus, is applied to another motor cor-
tex area in order to examine interregional or interhe-
mispheric interactions and transcallosal conduction
times (37). They are influenced by the intensity of the
conditioning TMS, with stronger conditioning TMS
pulse inducing greater and longer interhemispheric
inhibition.

The interhemispheric influence of the left domi-
nant hemisphere is more pronounced in right-handed
people (38). This technique allows the investigation
of interhemispheric interactions in motor control and
movement disorders (39, 40). Further studies may
establish this paired-pulse method as a diagnostic tool
to elucidate mechanisms of pathological interhemi-
spheric and intracortical interactions in neurological
and psychiatric diseases. This should expand our un-
derstanding of disconnection syndromes, in cognition,
and in diseases.

TMS methods in clinical practice

Both standard and non-standard methods are used
in the investigation of patients presenting with neuro-
logical disorders (Table).

Standard methods

The size of MEPs is measured on neurographic
recordings. The amplitude of the negative phase (in
mV) may be expressed as a percentage of the ampli-
tude of the maximum M-wave recorded from the same
muscle following supramaximal electrical stimulation
of the corresponding peripheral nerve. A reduced size
ratio is suggestive of either a reduced excitability of
the cortico-spinal motoneurons, or a conduction block
on the cortico-spinal tract, or a loss of cortical moto-
neurons or axons.

The MEP latency is measured in milliseconds from
the stimulus artifact to the motor response onset. To
assess conduction along the corticospinal tract the
CMCT is determined by subtracting the peripheral
conduction time. Increased CMCT indicates slowing
of conduction of descending impulses, or loss of fast
conducting axons.

Non-standard methods

The triple stimulation technique (TST) provides a
quantitative electrophysiological measurement of cen-
tral motor conduction failures (7). This technique
involves three stimuli (transcranial, distal and proxi-
mal on the peripheral nerve) timed to produce two
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Table. Variables of transcranial magnetic stimulation in neurological disorders
Neurological MEP CMCT MTh Sp
disorder amplitude
Multiple sclerosis Reduced Increased Increased Prolonged
Stroke Reduced Increased Increased or Shortened
reduced
Cervical myelopathy Reduced Increased Increased Shortened
Amyotropic lateral sclerosis Reduced Increased Reduced (early) Normal or
increased (late) shortened
Parkinson’s disease Facilitated Normal Normal Shortened
at rest
Dystonia Normal Normal Normal Shortened
Cerebellar ataxias Normal or Increased Increased Prolonged
reduced
Epilepsies Normal or Normal Normal, Prolonged
reduced reduced
or increased

MEP — motor evoked potential, CMCT — central motor conduction time, MTh — motor threshold,

SP — silent period.

collisions. The TMS descending impulses collide with
the antidromic impulses from the distal stimulus. The
third stimulus, proximal on the nerve, evokes ortho-
dromic impulses, which cancel any uncollided im-
pulses from the distal stimulus. The response from
the third stimulus therefore reflects the number of
peripheral neurons activated from TMS. By suppres-
sing the phase cancellation due to the dispersion of
the MEP, the TST is markedly more sensitive than
conventional MEPs in detecting corticospinal conduc-
tion failures and it provides a precise assessment of
corticospinal tract conduction (41) (Fig. 4).

The cortical SP consists in an inhibition of volun-
tary activity in a target muscle contralateral to the
stimulated hemisphere. It is defined as the time interval
from the end of the MEP to the return of voluntary
electromyographic activity (25, 26). The silent period
associates an inhibition of the spinal motoneuron (ear-
ly part), and of the cortical motoneuron (late part) (25).

When TMS is applied to the motor cortex ipsila-
teral to the target muscle, an “ipsilateral silent” period
can be recorded (42). This silent period is mediated
mainly via transcallosal pathways. In the patients with
lesions in the corpus callosum, this inhibition is delay-
ed or absent (42, 43). This transcallosal technique adds
functional information to the anatomical information
provided from MRI studies in patients with multiple
sclerosis (44). In multiple sclerosis, the involvement
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of the corpus callosum can be associated with a poor
prognosis regarding cognitive functions (45). This
TMS method can be associated with the paired-pulse
TMS technique to investigate further interhemispheric
interactions.

Intracortical excitatory or inhibitory mechanisms
can be analyzed by using paired-pulse techniques.
TMS methods testing input-output curves, mapping
of cortical muscle representation, interhemispheric in-
hibition and central fatigue are not commonly applied
in clinical practice.

TMS in clinical neurology

Multiple sclerosis

In multiple sclerosis (MS), the central white matter
lesions disseminated in time and space, frequently
affect both cortico-nuclear and cortico-spinal conduc-
tion. Cortico-motoneuronal function can be assessed
by studying MEPs to cranial and peripheral muscles.
Various abnormalities can be observed in MS that re-
late to demyelination and to axonal loss (46—48). De-
myelination of central motor pathways induces slowed
conduction or conduction block. The latency of MEPs
can be prolonged and the response may be dispersed,
of smaller size, or absent. A reduced MEP size may
indicate a central conduction deficit, but this relation
is obscured by the desynchronization of the descen-
ding action potentials in response to TMS. The TST
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Fig. 4. Scheme of the triple stimulation technique (TST)

The motor tract is simplified to four spinal motor neurons with their axons. Horizontal lines represent the
muscle fibers of the four motor units. Solid arrows depict action potentials giving rise to a trace deflection,
open arrows depict action potentials that are not recorded. A1 — in the example, only three of four motor
neurons are brought to discharge by the brain stimulus due to upper motor neuron lesion; A2 — following the
brain stimulus, action potentials descend in axons 1-3. Desynchronization of the three action potentials has
occurred. Motor neurons 1 and 2 discharge twice so that a second action potential descends (*). After a delay,
a maximal second stimulus is given at the wrist (W), leading to descending (orthodromic) action potentials
causing a first negative deflection of TST,__ curve, and to ascending (antidromic) action potentials in all
axons. Three of the ascending action potentials collide and cancel with the action potentials descending in
axons 1-3. The sites of collision are different due to the desynchronization of the descending action potentials;
A3 — the multiple discharges (*) on motor neurons 1 and 2 are not cancelled and continue to descend. They
give rise to a small deflection in the trace (*). The action potential on axon 4 continues to ascend, since no
collision occurred; A4 —after a delay, a maximal third stimulus is given at Erb’s point, evoking action potentials,
which descend on axons 1-3, while a collision occurs in axon 4; A5 — finally, a synchronized response from
the three axons (1-3), which were initially excited by the transcranial stimulus, is recorded as a second main
deflection of the TST _ curve; B1-BS — the TST  curve is recorded by replacing the first stimulus at the
cortex by a supramaximal stimulus at Erb’s point (succession of stimuli: Erb-wrist-Erb) with appropriate
adjustments of the delays; C — superimposition of TST, and TST__ curves. The TST amplitude ratio is
75%, indicating that three of four neurons were excited by the transcranial stimulus (from Rosler and Magistris,
Handbook of Clinical Neurophysiology, Eisen Ed., 2004).

that eliminates these effects allows quantification of
conducting central motor neurons. Thereby, it increa-
ses the sensitivity to detect a central motor conduction
deficit (41). The motor threshold can be moderately
increased in MS. The silent period is usually prolon-
ged (49). Data that concern cortical excitability chan-
ges seem of little clinical value. Abnormalities of in-

terhemispheric inhibition may be observed, that reflect
demyelination or axonal lesions of corpus callosum
fibers (50). The combination of CMCT and transcallo-
sal inhibition data may be useful to estimate the di-
sease progression and prognosis (51).

Stroke

In stroke patients with hemiplegia, MEPs after cor-
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tical stimulation of the damaged hemisphere are of-
ten absent. Low amplitude MEPs with increased mo-
tor threshold and prolonged CMCT can be observed
in patients with paresis (52). TMS is a good predictor
of stroke outcome. During the early stage, obtainable
MEPs correlate with a favorable outcome, whereas
absent responses predict a poor recovery (53, 54).

ICI mechanisms may be modified in stroke pa-
tients, for instance: ICI was found to be reduced in
the affected hemisphere, a shorter SP duration was
reported after lesion of the primary motor cortex,
whereas SP duration was prolonged in patients with
subcortical or nonprimary motor areas involvements
(28).

Amyotrophic lateral sclerosis

In amyotrophic lateral sclerosis (ALS) patients,
MEPs are often of reduced size or absent. This rela-
tes to the inexcitability or to the lesion of cortical or
spinal motoneurons, or both. CMCT can be prolonged
in ALS but the degree of prolongation is usually mo-
dest (55). The TST is of interest in detecting and quan-
tifying the central conduction deficit while simulta-
neously yielding information concerning the periphe-
ral motoneuron (41, 56). Information on the respon-
ses of single spinal motoneurons to the corticospinal
input in ALS reveals evidence of reduced firing fre-
quency in corticospinal fibers with consequent im-
paired temporal summation of the motoneurons (57).

Cervical spondylotic myelopathy

Cervical spondylotic myelopathy (CSM) is charac-
terized by a marked and early CMCT prolongation.
Sometimes clinically, and with routine electroneuro-
myography (ENMG) examination, distinction be-
tween CSM and ALS may be difficult. These disor-
ders, that impair both upper and lower motoneurons,
may share similar clinical features, including muscle
wasting and fasciculations. TMS enables to distin-
guish these disorders. CMCT is usually more pro-
longed in CSM than in ALS, however this may not be
discriminative in an individual patient. Studies per-
formed on the muscles spared in CMS but concerned
in ALS such as the masseter (58) or the trapezius
muscles (59) are helpful for this distinction.

Parkinson's disease

CMCT is normal in Parkinson’s disease and other
movement disorders. Motor threshold can be reduced,
especially in patients with predominant rigidity in
whom there is an enhanced facilitatory effect of volun-
tary contraction. Moreover, the SP has been shown to
be shorter in Parkinson’s disease patients (60), whe-
reas it is lengthened by L-DOPA therapy, not only in
Parkinson’s disease patients, but also in healthy sub-
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jects (61). One presumes that in Parkinson’s disease
there is a reduced basal ganglia inhibition of the mo-
tor cortex leading to a shorter than normal SP and
that this disbalance is corrected by L-DOPA. The tonic
effect of thalamic output on motor cortex excitability
has been studied in a patient undergoing thalamotomy
for hemiparkinsonism. The facilitatory effect of a
voluntary contraction was enhanced and the SP length-
ened after thalamotomy (62).

Dystonia

In secondary dystonias a prolonged CMCT has
been reported (63). Cortical motor threshold and MEP
amplitude are normal at rest, but MEP size increases
more steeply in patients than in control subjects with
increasing levels of muscle contraction or stimulus
intensities. Additionally, an abnormal size and loca-
tion of cortical representation of the dystonic mus-
cles has been consistently reported (reversed by botu-
linum toxin injections). These findings suggest the
occurrence of abnormalities in the excitability or plas-
ticity of motor cortical areas in dystonia. The SP du-
ration is shorter than in normal subjects (64). ICI at
short interstimulus intervals of paired-pulse is reduced
at rest (65) and normalized after botulinum toxin in-
jection (66). ICI at long interstimulus intervals is in-
creased during contraction. Overall, TMS findings
reflect hyperexcitability of motor cortex areas in fo-
cal dystonias.

Cerebellar disorders

Longer CMCT and higher than normal motor
threshold have been described in various spinocere-
bellar ataxias and in other cerebellar degenerations.
The occurrence of prolonged cortical SP suggests a
reduced cortical excitability, possibly related to the
enhancement of inhibitory activities (67).

Epilepsy

TMS has been used to study generalized and focal
epilepsies. Different results probably relate to the
multiform types of epilepsies, the presence of drugs
and the different techniques used. The most common
abnormality in the motor cortex of patients investiga-
ted with paired-pulse TMS, is an increased excitabi-
lity with a reduction of intracortical inhibitory mecha-
nisms (68). Motor threshold and MEP amplitude are
also variable in different forms of epilepsies. TMS
proved useful to test the mode of action and the respon-
sivity to antiepileptic drugs (68, 69).

Facial palsies

The clinical and electrophysiological spectrum of
facial palsies is broad and differential diagnosis may
be difficult. The lesion of the facial nerve frequently
lays within the skull, where the nerve is not accessi-
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ble to conventional electrical stimulation. TMS chan-
ged this situation, because the proximal intracranial
part of the facial nerve and the contralateral hemi-
sphere facial associated cortex became accessible to
stimulation (70, 71). This gave new insights into the
dynamics and pathophysiology of facial palsies (72).
In idiopathic facial palsy, an absent response of the
facial nerve to TMS may be observed on the clini-
cally affected side, and may follow the palsy long af-
ter clinical recovery (73). Such particular patterns of
electrophysiological abnormalities are suggestive of
the etiology of different facial palsies (72).

Repetitive transcranial magnetic stimulation

The technique of repetitive transcranial magnetic
stimulation (rTMS) allows cortical motor areas to be
activated with trains of stimuli evoking successive
MEPs. Trains of stimuli at various frequencies and
intensities induce excitatory and inhibitory effects
both during and after the train.

Effects of repetitive brain stimulation

The effects on cortical excitability during the trains
of rTMS can be evaluated by measuring the size and
threshold of MEPs (74—76) and the duration of the
SP (77, 78).

The effects that follow the trains of rTMS can be
evaluated by studying intracortical inhibition and fa-
cilitation. Trains of rTMS can induce short-term chan-
ges in cortical excitability — immediately after the train
(75, 79), and long-term changes of cortical excitabi-
lity. This effect may range from inhibition to facilita-
tion, depending on the stimulation frequency. Lower
frequencies of rTMS, in the 1 Hz range, can suppress
excitability of motor cortex (80—82), while 20 Hz sti-
mulation trains seem to lead to a temporary increase
in cortical excitability (75, 82, 83). While these ef-
fects vary between individuals (82, 83), the effect of
low frequency rTMS is robust and long lasting (79,
82) and can be applied to the motor cortex and to other
cortical regions to study brain-behavior relations.

Several studies in humans that combined rTMS
and functional neuroimaging techniques have detected
suppressed or increased cerebral blood flow and me-
tabolism in the stimulated area after slow (1 Hz) or
rapid (10-20 Hz) rTMS of the motor cortex (84). The
combination of TMS and neuroimaging can be most
helpful in the investigation of functional connectivity
among regions in the human brain (85). Moreover,
the combination of rTMS with tracer PET or mag-
netic resonance spectroscopy may become a novel tool
to investigate neurochemical functional anatomy (85,
86).

rTMS in clinical neurology — therapeutic use

The lasting modulation of cortical activity by rTMS
is not restricted to motor cortical areas and long-term
effects of rTMS can be induced in visual (87), pre-
frontal (88), parietal cortex (89) and in the cerebel-
lum (90). This finding raises the possibility of thera-
peutic applications of rTMS in case of pathologically
decreased or increased cortical excitability.

rTMS in the treatment of depression

Effect on depression is the most thoroughly stu-
died therapeutical application of rTMS (91, 92). Both
high frequency stimulation of the left dorsolateral
prefrontal cortex, and low frequency stimulation of
the right side can improve depression. T. A. Kimbrell
and colleagues (93) suggested that patients with de-
creased cerebral metabolism might respond better to
high frequency, and those with hypermetabolism may
respond better to low frequency stimulation. This fits
with the frequency-dependent effects of rTMS on the
motor cortical excitability.

Parkinson's disease

A. Pascual-Leone and colleagues (94) first reported
that in patients with Parkinson’s disease subthresh-
old high frequency rTMS to the motor cortex impro-
ved contralateral hand function. There are two appli-
cations of this method in Parkinson’s disease: increa-
sing cortical excitability to thalamocortical drive, which
is believed to be lacking in this disease and modify-
ing catecholamine metabolism subcortically through
cortical stimulation (95, 96). Different studies have
shown contradictory results for rTMS in patients with
Parkinson’s disease (97) that draws attention to the
difficulty of proving a clinical therapeutic effect and
variability of TMS effects across individuals.

Epilepsy and related disorders

Some investigators have attempted to use low fre-
quency rTMS to treat seizure disorders and other
manifestations of cortical hyperexcitability, but effects
were transient and controversial (98, 99).

Stroke

Attempts have been made to influence favorably
outcome after stroke by rTMS suppressing maladap-
tive cortical plasticity and improving adaptive corti-
cal activity to neurorehabilitation (100). It is prema-
ture to propose such trials as realistic therapeutic ap-
plications (101, 102). However, rTMS of the region
of interest detected in functional images could high-
light the property of plastic changes of the cortical
circuitry and hint at future novel clinical interventions.

Conclusions
Transcranial magnetic stimulation introduced 20
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years ago has developed as an interesting non-inva-
sive tool for neuroscience research. It is an effective
diagnostic tool that carries potential therapeutic uses.

The main clinical application of transcranial mag-
netic stimulation concerns testing of the functional
integrity of the corticospinal tract in patients with dis-
orders affecting the central nervous system. Use of
standard transcranial magnetic stimulation in these
neurological disorders provides several information:
detection of subclinical upper motoneuron involve-
ment, at times localization of anatomical site of le-
sions, longitudinal monitoring of motor abnormali-
ties during course of diseases, and valuable aid to dif-
ferential diagnosis. The more complex transcranial
magnetic stimulation applications provide informa-

tion on the central mechanisms underlying changes
in the corticomotoneuronal excitability in various neu-
rological conditions.

Repetitive stimulation of the brain opens a new
field of investigations of cognitive function and mood,
and of therapeutic possibilities. There are interesting
results in the short-term treatment of refractory de-
pression by daily sessions of repetitive transcranial
magnetic stimulation. By changing the frequency of
stimulation, it may be possible either to up- or down-
modulate cortical excitability for therapeutic benefit.

The ability of transcranial magnetic stimulation to
measure and modify cortical activity offers possibili-
ties to apply this methodology to clinical neurology,
neurorehabilitation and psychiatry.

Transkranijiné magnetiné stimuliacija klinikinéje praktikoje

Miglé AliSauskiené, Andre Truffert!, Nerija Vaitiené, Michel R. Magistris!
Kauno medicinos universiteto Neurologijos klinika, Lietuva
Zenevos universiteto Neurologijos klinika, Sveicarija

RaktaZodziai: kortikospinalinis laidumas, motoriniai potencialai, elektrofiziologija, neurofiziologija, Zievés

tylusis periodas.

Santrauka. Transkranijiné magnetiné stimuliacija — tai neinvaziné ir neskausminga galvos smegeny ir

galvos nervy stimuliacija, taikoma nuo 1985 mety. Transkranijinés magnetinés stimuliacijos metu galima
stimuliuoti pavieniais ar skirtingy intervaly poriniais impulsais (tas pacias ar skirtingas smegeny sritis) bei
ivairaus daznio pasikartojan¢iy ritminiy impulsy grupémis. Pavieniai impulsai sukelia motorinius potencialus,
kurie taikomi diagnozuojant ligas bei prognozuojant jy eiga. Pasikartojan¢iy impulsy transkranijiné magnetiné
stimuliacija gali keisti galvos smegeny zievés jaudruma. Taigi atsirado galimybé tyrinéti neurony rySius ir

diagnozuoti bei gydyti ju sutrikimus.

Siame straipsnyje apzvelgiami pagrindiniai transkranijinés magnetinés stimuliacijos principai, meto-
dologiniai aspektai, atlikimo buidai, taip pat analizuojamas ju panaudojimas klinikinéje praktikoje.

Adresas susirasinéti: M. Alisauskiené, KMU Neurologijos klinika, Eiveniy 2, 50009 Kaunas
El. pastas: migle.alisauskiene@one.lt
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